The chemical composition of planets is inherited from that of the natal protoplanetary disk at the time of planet formation. Increasing observational evidence suggests that planet formation occurs in less than 1−2 Myr. This motivates the need for spatially resolved spectral observations of young Class I disks, as carried out by the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT). In the context of ALMA-DOT, we observe the edge-on disk around the Class I source IRAS 04302+2247 (the butterfly star) in the 1.3 mm continuum and five molecular lines. We report the first tentative detection of methanol (CH3OH) in a Class I disk and resolve, for the first time, the vertical structure of a disk with multiple molecular tracers. The bulk of the emission in the CO 2−1, CS 5−4, and o–H2CO 31, 2 − 21, 1 lines originates from the warm molecular layer, with the line intensity peaking at increasing disk heights, z, for increasing radial distances, r. Molecular emission is vertically stratified, with CO observed at larger disk heights (aperture z/r ∼ 0.41−0.45) compared to both CS and H2CO, which are nearly cospatial (z/r ∼ 0.21−0.28). In the outer midplane, the line emission decreases due to molecular freeze-out onto dust grains (freeze-out layer) by a factor of > 100 (CO) and 15 (CS). The H2CO emission decreases by a factor of only about 2, which is possibly due to H2CO formation on icy grains, followed by a nonthermal release into the gas phase. The inferred [CH3OH]/[H2CO] abundance ratio is 0.5−0.6, which is 1−2 orders of magnitude lower than for Class 0 hot corinos, and a factor ∼2.5 lower than the only other value inferred for a protoplanetary disk (in TW Hya, 1.3−1.7). Additionally, it is at the lower edge but still consistent with the values in comets. This may indicate that some chemical reprocessing occurs in disks before the formation of planets and comets.
Planet-forming disks are not isolated systems. Their interaction with the surrounding medium affects their mass budget and chemical content. In the context of the ALMA-DOT program, we obtained high-resolution maps of assorted lines from six disks that are still partly embedded in their natal envelope. In this work, we examine the SO and SO2 emission that is detected from four sources: DG Tau, HL Tau, IRAS 04302+2247, and T Tau. The comparison with CO, HCO+, and CS maps reveals that the SO and SO2 emission originates at the intersection between extended streamers and the planet-forming disk. Two targets, DG Tau and HL Tau, offer clear cases of inflowing material inducing an accretion shock on the disk material. The measured rotational temperatures and radial velocities are consistent with this view. In contrast to younger Class 0 sources, these shocks are confined to the specific disk region impacted by the streamer. In HL Tau, the known accreting streamer induces a shock in the disk outskirts, and the released SO and SO2 molecules spiral toward the star in a few hundred years. These results suggest that shocks induced by late accreting material may be common in the disks of young star-forming regions with possible consequences for the chemical composition and mass content of the disk. They also highlight the importance of SO and SO2 line observations in probing accretion shocks from a larger sample.
We have observed the very low-mass Class 0 protostar IRAS 15398−3359 at scales ranging from 50 to 1800 au, as part of the Atacama Large Millimeter/Submillimeter Array Large Program FAUST. We uncover a linear feature, visible in H 2 CO, SO, and C 18 O line emission, which extends from the source in a direction almost perpendicular to the known active outflow. Molecular line emission from H 2 CO, SO, SiO, and CH 3 OH further reveals an arc-like structure connected to the outer end of the linear feature and separated from the protostar, IRAS 15398−3359, by 1200 au. The arc-like structure is blueshifted with respect to the systemic velocity. A velocity gradient of 1.2 km s −1 over 1200 au along the linear feature seen in the H 2 CO emission connects the protostar and the arc-like structure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.