In the present work, we offer a unifying perspective between the dark soliton stripe and the vortex multipole (dipole, tripole, aligned quadrupole, quintopole, etc.) states that emerge in the context of quasi-two-dimensional Bose-Einstein condensates. In particular, we illustrate that the multivortex states with the vortices aligned along the (former) dark soliton stripe sequentially bifurcate from the latter state in a supercritical pitchfork manner. Each additional bifurcation adds an extra mode to the dark soliton instability and an extra vortex to the configuration; moreover, the bifurcating states inherit the stability properties of the soliton prior to the bifurcation. The critical points of this bifurcation are computed analytically via a few-mode truncation of the system, which clearly showcases the symmetry-breaking nature of the corresponding bifurcation. We complement this small(-er) amplitude, few mode bifurcation picture, with a larger amplitude, particle-based description of the ensuing vortices. The latter enables us to characterize the equilibrium position of the vortices, as well as their intrinsic dynamics and anomalous modes, thus providing a qualitative description of the nonequilibrium multivortex dynamics.
A quantized vortex dipole is the simplest vortex molecule, comprising two countercirculating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasiperiodic behavior, in which the vortex lines undergo stable epicyclic orbits.
We explore the stability and dynamics of dark-bright solitons in two-component elongated BoseEinstein condensates by developing effective 1D vector equations as well as solving the corresponding 3D Gross-Pitaevskii equations. A strong dependence of the oscillation frequency and of the stability of the dark-bright (DB) soliton on the atom number of its components is found. Spontaneous symmetry breaking leads to oscillatory dynamics in the transverse degrees of freedom for a large occupation of the component supporting the dark soliton. Moreover, the interactions of two DB solitons are investigated with special emphasis on the importance of their relative phases. Experimental results showcasing dark-bright soliton dynamics and collisions in a BEC consisting of two hyperfine states of 87 Rb confined in an elongated optical dipole trap are presented.Introduction. Multi-component systems of nonlinear waves are a fascinating topic with a rich and diverse history spanning a variety of areas, including Bose-Einstein condensates (BECs) in atomic physics [1], optical fibers and crystals in nonlinear optics [2], and integrable systems in mathematical physics [3]. Of particular interest are the so-called "symbiotic solitons", namely structures that would not otherwise exist in one-component settings, but can be supported by the interaction between the optical or atomic species components. A prototypical example of such a structure is the dark-bright (DB) soliton in self-defocusing, two-component systems, whereby the dark soliton (density dip) which typically arises in self-defocusing media [1][2][3][4] creates, through nonlinearity, a trapping mechanism that localizes a density hump (bright soliton) in the second component.
We study the existence and stability properties of clusters of alternating charge vortices in Bose-Einstein condensates. It is illustrated that such states emerge from cascades of symmetry-breaking bifurcations that can be analytically tracked near the linear limit of the system via weakly nonlinear few-mode expansions. We present the resulting states that emerge near the first few eigenvalues of the linear limit, and illustrate how the nature of the bifurcations can be used to understand their stability. Rectilinear, polygonal and diagonal vortex clusters are only some of the obtained states while mixed states, consisting of dark solitons and vortex clusters, are identified as well.
In this work, the spectral properties of a singly-charged vortex in a Bose-Einstein condensate confined in a highly anisotropic (disk-shaped) harmonic trap are investigated. Special emphasis is given on the analysis of the so-called anomalous (negative energy) mode of the Bogoliubov spectrum. We use analytical and numerical techniques to illustrate the connection of the anomalous mode to the precession dynamics of the vortex in the trap. Effects due to inhomogeneous interatomic interactions and dissipative perturbations motivated by finite temperature considerations are explored. We find that both of these effects may give rise to oscillatory instabilities of the vortex, which are suitably diagnosed through the perturbation-induced evolution of the anomalous mode, and being monitored by direct numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.