Aims None of the conventional echocardiographic parameters alone predict increased NTproBNP level and symptoms, making diagnosis of heart failure with preserved ejection fraction (HFpEF) very difficult in some cases, in resting condition. We evaluated LA functions by 2D speckle tracking echocardiography (STE) on top of conventional parameters in HFpEF and preHF patients with diastolic dysfunction (DD), in order to establish the added value of the LA deformation parameters in the diagnosis of HFpEF. Methods We prospectively enrolled 125 patients, 88 with HFpEF (68±9 yrs), and 37 asymptomatic with similar risk factors with DD (preHF) (61±8 yrs). We evaluated them by NTproBNP, conventional DD parameters, and STE. Global longitudinal strain (GS) was added. LA reservoir (R), conduit (C), and pump function (CT) were assessed both by volumetric and STE. 2 reservoir strain (S) derived indices were also measured, stiffness (SI) and distensibility index (DI). Results LA R and CT functions were significantly reduced in HFpEF compared to preHF group (all p<0.001), whereas conduit was similarly in both groups. SI was increased, whereas DI was reduced in HFpEF group (p<0.001). By adding LA strain analysis, from all echocardiographic parameters, SR_CT<-1.66/s and DI<0.57 (AUC = 0.76, p<0.001) demonstrated the highest accuracy to identify HFpEF diagnosis. However, by multivariate logistic regression, the model that best identifies HFpEF included only SR_CT, GS and sPAP (R2 = 0.506, p<0.001). Moreover, SR_CT, DI, and sPAP registered significant correlation with NTproBNP level. Conclusions By adding LA functional analysis, we might improve the HFpEF diagnosis accuracy, compared to present guidelines. LA pump function is the only one able to differentiates preHF from HFpEF patients at rest. A value of SR_CT < -1.66/s outperformed conventional parameters from the scoring system, reservoir strain, and LA overload indices in HFpEF diagnosis. We suggest that LA function by STE could be incorporated in the current protocol for HFpEF diagnosis at rest as a major functional criterion, in order to improve diagnostic algorithm, and also in the follow-up of patients with risk factors and DD, as a prognostic marker. Future studies are needed to validate our findings.
Rationale: Systemic lupus erythematosus (SLE) is characterized by numerous immunological abnormalities that lead to multiorgan involvement. Central and peripheral nervous system manifestations are present in 8% to 92% of the cases of SLE. Furthermore, there have been reported cases of secondary autoimmune myelofibrosis associated with SLE. Patient concerns: We present the case of a 64-year-old female who was transferred from the Cardiology Department, where she was admitted for pericardial-pleural-peritoneal effusion after being discharged from another hospital following the resolution of a febrile episode. During hospitalization, she presented multiple oculomotor nerves palsies and weakness in the lower limbs. Serial cerebral magnetic resonance imaging (MRI) revealed extensive cerebral venous thrombosis. Nerve conduction studies showed sensory-motor axonal polyneuropathy. Thoracic MRI revealed a rare finding in patients with SLE – lytic lesions. Diagnoses: Extensive clinical, imaging, blood, and urine tests were performed. The patient exhibited pancytopenia, elevated inflammatory markers, hyperhomocysteinemia, mild hypoproteinemia, and severe proteinuria. The Hematology consultation ascertained that the peripheral blood smear and the bone marrow aspiration showed no alterations suggestive for a primary hematological disease and the thoracic vertebral-medullary MRI changes had a very low probability of representing osteolytic lesions in the context of plasma cells dyscrasia, but could not exclude their being result of a secondary autoimmune myelofibrosis. Immunology blood tests highlighted the presence of antinuclear antibodies and lupus anticoagulants. In this context, the Rheumatology consultation established the diagnosis of SLE with multiple complications. Interventions: The patient received treatment with cyclophosphamide. Outcomes: The ocular motricity problems and the paraparesis showed improvement. However, 1 week later, the patient developed weakness, dyspnea, and right lower quadrant abdominal pain. The abdominal-pelvic computed tomography scan indicated an acute right retroperitoneal hematoma with active bleeding for which she underwent arterial embolization of the spinal lumbar arteries with optimal result, but she died a few days later. Lessons: We chose to present this case in order to highlight the importance of interdisciplinarity in diagnosing and managing patients with SLE and multiorgan ailments, especially when faced with rare constellations of complications such as extensive cerebral venous thrombosis and osseous lytic lesions caused by secondary autoimmune myelofibrosis.
Left ventricular non-compaction (LVNC) with preserved ejection fraction (EF) is still a controverted entity. We aimed to characterize structural and functional changes in LVNC with heart failure with preserved EF (HFpEF). Methods: We enrolled 21 patients with LVNC and HFpEF and 21 HFpEF controls. For all patients, we performed CMR, speckle tracking echocardiography (STE), and biomarker assessment for HFpEF (NT-proBNP), for myocardial fibrosis (Galectin-3), and for endothelial dysfunction [ADAMTS13, von Willebrand factor, and their ratio]. By CMR, we assessed native T1 and extracellular volume (ECV) for each LV level (basal, mid, and apical). By STE, we assessed longitudinal strain (LS), globally and at each LV level, base-to-apex gradient, LS layer by layer, from epicardium to endocardium, and transmural deformation gradient. Results: In the LVNC group, mean NC/C ratio was 2.9 ± 0.4 and the percentage of NC myocardium mass was 24.4 ± 8.7%. LVNC patients, by comparison with controls, had higher apical native T1 (1061 ± 72 vs. 1008 ± 40 ms), diffusely increased ECV (27.2 ± 2.9 vs. 24.4 ± 2.5%), with higher values at the apical level (29.6 ± 3.8 vs. 25.2 ± 2.8%) (all p < 0.01); they had a lower LS only at the apical level (−21.4 ± 4.4 vs. −24.3 ± 3.2%), with decreased base-to-apex gradient (3.8 ± 4.7 vs. 6.9 ± 3.4%) and transmural deformation gradient (3.9 ± 0.8 vs. 4.8 ± 1.0%). LVNC patients had higher NT-proBNP [237 (156–489) vs. 156 (139–257) pg/mL] and Galectin-3 [7.3 (6.0–11.5) vs. 5.6 (4.8–8.3) ng/mL], and lower ADAMTS13 (767.3 ± 335.5 vs. 962.3 ± 253.7 ng/mL) and ADAMTS13/vWF ratio (all p < 0.05). Conclusion: LVNC patients with HFpEF have diffuse fibrosis, which is more extensive at the apical level, explaining the decrease in apical deformation and overexpression of Galectin-3. Lower transmural and base-to-apex deformation gradients underpin the sequence of myocardial maturation failure. Endothelial dysfunction, expressed by the lower ADAMTS13 and ADAMTS13/vWF ratio, may play an important role in the mechanism of HFpEF in patients with LVNC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.