Silver nanoparticles were synthesized and deposited on different types of fabrics using ultrasound irradiation. The structure of silver-fabric composites was studied by physico-chemical methods. The mechanism of the strong adhesion of silver nanoparticles to the fibers is discussed. The excellent antibacterial activity of the Ag-fabric composite against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) cultures was demonstrated.
Hydrogen incorporation in silicon layers prepared by plasma-enhanced chemical-vapor deposition using silane dilution by hydrogen has been studied by infrared spectroscopy ͑IR͒ and elastic recoil detection analysis ͑ERDA͒. The large range of silane dilution investigated can be divided into an amorphous and a microcrystalline zone. These two zones are separated by a narrow transition zone at a dilution level of 7.5%; here, the structure of the material cannot be clearly identified. The films in/near the amorphous/microcrystalline transition zone show a considerably enhanced hydrogen incorporation. Moreover, comparison of IR and ERDA and film stress measurements suggests that these layers contain a substantial amount of molecular hydrogen probably trapped in microvoids. In this particular case the determination of the total H content by IR spectroscopy leads to substantial errors. At silane concentrations below 6%, the hydrogen content decreases sharply and the material becomes progressively microcrystalline. The features observed in the IR-absorption modes can be clearly assigned to mono-and/or dihydride bonds on ͑100͒ and ͑111͒ surfaces in silicon crystallites. The measurements presented here constitute a further indication for the validity of the proportionality constant of Shanks et al. ͓Phys. Status Solidi B 110, 43 ͑1980͔͒, generally used to estimate the hydrogen content in ''conventional'' amorphous silicon films from IR spectroscopy; additionally, they indicate that this proportionality constant is also valid for the microcrystalline samples.
Thin films of nc-TiC/ a-C:H nanocornposite have been deposited by reactive magnetron sputtering at substrate bias values of-240 and-91 V. The grain size and grain separation, which together define the nanostructure, are correlated to the amount of the amorphous phase. From the size of the TiC grains measured by x-ray diffraction and the amorphous hydrogenated carbon (a-C:H) phase content determined by x-ray photoelectron spectroscopy, the mean grain separation is estimated using a simple model for the nanostructure. Films deposited at-240 V show a hardness enhancement for a-C:H phase contents in the range 10% to 30% with TiC grain sizes around 5 nm. The mean grain separation for such films was estimated to be 0.3 nm. Films with higher a-C:H phase contents still have 5 nm small grains, but their mean grain separation is larger than 0.5 nm; their hardness is thus determined by the properties of the amorphous matrix. A less pronounced hardness enhancement is observed for films deposited at-91 V. They have larger grains and larger mean gain separations and show smaller hardness values. The hardness of the films, among other mechanical properties, is controlled by the nanostructure. Raman measurements have shown that a-C:H is present in films with mean grain separation down to 0.2 nm. Coefficients of friction against steel lower than 0.3, independent of the substrate bias, are found for films with mean grain separations as low as 0.15 nm. Self-lubrication due to a-C:H can explain the observed friction behavior, although the presence of a-C:H cannot be proved by Raman spectroscopy for films with mean grain sepm•ations smaller than 0.2 nm. It is shown that the substrate bias is crucial in obtaining increased hardness of nc-TiCI a-C:H nanocomposite thin films. In contrast lo the hardness of the coatings, their friction behavior is not affected by the substrate bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.