Experiments in rodents have demonstrated an important role for selectins in kidney ischemia-reperfusion injury (IRI). However, the relevance of this in larger mammals, as well as the impact on long-term structure and function is unknown. We tested the hypothesis that small molecule selectin ligand inhibition attenuates IRI, cellular inflammation, and long-term effects on renal interstitial fibrosis. We used a porcine model of kidney IRI and used Texas Biotechnology Corporation (TBC)-1269, a selectin ligand inhibitor. Renal function, tissue inflammation, and tubulointerstitial fibrosis development were evaluated up to 16 weeks. Both warm and cold ischemia models were studied for relevance to native and transplant kidney injury. Pigs treated with TBC-1269 during 45 min of warm ischemia (WI) showed significantly increased glomerular filtration rate compared to control animals. In pigs with severe IRI (WI for 60 min), TBC-1269 treatment during IRI significantly increased renal recovery. Cellular inflammation was strongly reduced, particularly influx of CD4 cells. Quantitative measurement of fibrosis by picrosirius red staining showed strong reduction in TBC-1269-treated groups. TBC-1269 also reduced cold IRI, inflammation, and fibrosis in kidneys preserved for 24 h at 4 degrees C and autotransplanted. The selectin ligand inhibitor TBC-1269 provides a novel and effective approach to attenuate IRI in both warm and cold ischemia in large mammals, in both short and long terms. Selectin ligand inhibition is an attractive strategy for evaluation in human kidney IRI.
Gap junctional intercellular communication is thought to play an important role in cell differentiation and tissue homeostasis. Gap junctional intercellular communication is mediated by intercellular channels connecting adjacent cells and composed of connexin (Cx) proteins. Until now, approximately 20 different Cx have been characterized in mammals, and they are expressed in a tissue-specific manner. The downregulation of Cx expression is often observed in tumors and transformed cell lines and is believed to contribute to the loss of proliferating control. Connexin 26 (Cx26) is a Cx constitutively expressed in the normal epithelial esophageal tissue. In the majority of esophageal tumors, Cx26 expression is low or totally absent. CpG island hypermethylation is known to be associated with gene silencing in cancer. Because the promoter and exon 1 region of Cx26 are rich in CpG dinucleotides, we examined whether the loss of Cx26 expression in human esophageal TE cell lines was related to the hypermethylation of this region. We analyzed several TE cell lines derived from different human esophageal carcinomas and exhibiting different levels of Cx26 expression by using methylation-sensitive restriction digestion and Southern blot analysis. We did not find any correlation between the Cx26 expression and the methylation level of the promoter region of the Cx26 gene. Our results suggest that methylation was probably not involved as a primary mechanism of Cx26 regulation in human esophageal cancer cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.