We present a study of the upper critical field of the newly discovered heavy fermion superconductor UTe 2 by magnetoresistivity measurements in pulsed magnetic fields up to 60 T and static magnetic fields up to 35 T. We show that superconductivity survives up to the metamagnetic transition at H m ≈ 35 T at low temperature. Above H m superconductivity is suppressed. At higher temperature superconductivity is enhanced under magnetic field leading to reentrance of superconductivity or an almost temperature independent increase of H c2 . By studying the angular dependence of the upper critical field close to the b axis (hard magnetization axis) we show that the maximum of the reentrant superconductivity temperature is depinned from the metamagnetic field. A key ingredient for the field-reinforcement of superconductivity on approaching H m appears to be an immediate interplay with magnetic fluctuations and a possible Fermi-surface reconstruction. 1 arXiv:1905.05181v1 [cond-mat.str-el]
Until recently, the spectroscopy of A-hypernuclei has been studied by use of the well-known, strangeness-exchanging (K,n) reactions. These reactions are typically characterized by small momentum transfer, q < qp, where qp is the Fermi momentum. They populate preferentially states of low angular momentum and are effective in producing "substitutior.al states" in which the A has the same orbital as the neutron it replaces (AL=0).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.