Abstract.We consider the magnetic induction equation for the evolution of a magnetic field in a plasma where the velocity is given. The aim is to design a numerical scheme which also handles the divergence constraint in a suitable manner. We design and analyze an upwind scheme based on the symmetrized version of the equations in the non-conservative form. The scheme is shown to converge to a weak solution of the equations. Furthermore, the discrete divergence produced by the scheme is shown to be bounded. We report several numerical experiments that show that the stable upwind scheme of this paper is robust.Mathematics Subject Classification. 65M12, 35L65.
In this paper, we design high order accurate and stable finite difference schemes for the initial-boundary value problem, associated with the magnetic induction equation with resistivity. We use Summation-By-Parts (SBP) finite difference operators to approximate spatial derivatives and a Simultaneous Approximation Term (SAT) technique for implementing boundary conditions. The resulting schemes are shown to be energy stable. Various numerical experiments demonstrating both the stability and the high order of accuracy of the schemes are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.