[1] Apparent seasonal site position variations are derived from 4.5 years of global continuous GPS time series and are explored through the ''peering'' approach. Peering is a way to depict the contributions of the comparatively well-known seasonal sources to garner insight into the relatively poorly known contributors. Contributions from pole tide effects, ocean tide loading, atmospheric loading, nontidal oceanic mass, and groundwater loading are evaluated. Our results show that $40% of the power of the observed annual vertical variations in site positions can be explained by the joint contribution of these seasonal surface mass redistributions. After removing these seasonal effects from the observations the potential contributions from unmodeled wet troposphere effects, bedrock thermal expansion, errors in phase center variation models, and errors in orbital modeling are also investigated. A scaled sensitivity matrix analysis is proposed to assess the contributions from highly correlated parameters. The effects of employing different analysis strategies are investigated by comparing the solutions from different GPS data analysis centers. Comparison results indicate that current solutions of several analysis centers are able to detect the seasonal signals but that the differences among these solutions are the main cause for residual seasonal effects. Potential implications for modeling seasonal variations in global site positions are explored, in particular, as a way to improve the stability of the terrestrial reference frame on seasonal timescales.
Abstract. We investigate crustal deformation in southwest Japan over a 3-year period revealed by a permanent dense Global Positioning System (GPS) array.Southwest Japan is a part of the Arnurian Plate, a microplate moving about 10 mm/yr toward the east with respect to the Eurasian Plate. It overrides the Philippine Sea Plate at the Nankai Trough and collides with the northeast Japan arc in the central part of Japan. In this paper we first derive GPS site velocities relative to the stable part of the Arnurian Plate in order to isolate signals of crustal deformation caused by the subduction and/or the collision. The velocity field has a conspicuous feature indicating the interseismic elastic loading by the Philippine Sea Plate slab at the Nankai Trough, characterized by the northwestward movements of points throughout the studied area. Their amplitudes are the largest at the Pacific coast and decay toward the Japan Sea coast with a subtle systematic shift of azimuths. A model assuming an elastic half-space, the convergence rate at the Nankai Trough based on a refined Euler vector, and the strength of the coupling inferred from a thermal model, could explain the velocity field in the western part of the studied area to a large extent. Those in the eastern part systematically deviate from them, and the residual components there show east-west shortening and north-south extension. This may represent crustal thickening and trenchward extrusion of crustal blocks caused by the collision between southwest and nor;heast Japan. This suggests that the collision between southwest and northeast Japan gives rise to not only crustal thickening but also trenchward extrusion of crustal block. A velocity contrast was found across the Median Tectonic Line, the largest inland active fault in Japan, but the current permanent GPS network is not dense enough for us to discuss its coupling depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.