Long-distance correlations (LDCs) of plasma potential fluctuations in the plasma edge have been investigated in the TCABR tokamak in the regime of edge biasing H-mode using an array of multi-pin Langmuir probes. This activity was carried out as part of the scientific programme of the 4th IAEA Joint Experiment (2009). The experimental data confirm the effect of amplification of LDCs in potential fluctuations during biasing recently observed in stellarators and tokamaks. For long toroidal distances between probes, the cross-spectrum is concentrated at low frequencies f < 60 kHz with peaks at f < 5 kHz, f = 13–15 kHz and f ∼ 40 kHz and low wave numbers with a maximum at k = 0. The effects of MHD activity on the LDCs in potential fluctuation are investigated.
We report here the first results of our movable electrode biasing experiments performed in the IR-T1 tokamak. For this study, a movable electrode biasing system was designed, constructed and installed on the IR-T1 tokamak. A positive voltage was applied to an electrode inserted in the tokamak limiter. The plasma current, poloidal and radial components of the magnetic fields, loop voltage and diamagnetic flux in the absence and presence of the biased electrode were measured. Results of the improvement done to plasma equilibrium behaviour are compared and discussed in this paper.
Background and Objectives: Non-thermal atmospheric-pressure plasma or cold plasma is defined as an ionized gas. This study aimed to investigate the effect of cold plasma on Pseudomonas aeruginosa strains. Also, the expression level of the alp virulence gene before and after treatment with cold plasma was compared with the Housekeeping gene gyrA.
Materials and Methods: P. aeruginosa isolates recovered from hospitalized burn patients at Shahid Motahari Burns Hos- pital, Tehran, Iran. The Kirby Bauer disk diffusion method was used to determine the antimicrobial susceptibility test. Then, the antibacterial effect of atmospheric non-thermal plasma was evaluated on P. aeruginosa in as in vitro and in vivo studies at different times on Muller Hinton agar and in mouse model (treated by plasma every day/ 90 sec). The histopathological study was evaluated by Hematoxylin-Eosin staining. Data were analyzed using SPSS software by the Chi-square test and Pvalues less than 0.05 considered as statistically significant.
Results: Results indicated that non-thermal atmospheric plasma inhibited the growth of P. aeruginosa. The non-thermal helium plasma accelerates wound healing for 6 days. Results showed that cold plasma decreased virulence gene expression alp after treatment. Therefore, cold plasma can be suggested as a complementary therapeutic protocol to reduce bacterial infection and accelerate wound healing and reduce the expression of virulence genes of pathogens.
Conclusion: Cold plasma showed pathogen inhibitory properties of P. aeruginosa and virulence alkaline protease and wound healing properties in animal models, so this inexpensive and suitable method can be presented to the medical community to disinfect burn wounds and improve wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.