Numerical simulation of the electric field distribution and photocurrent response of a planar InP/InGaAs avalanche photodiode is presented for small variations of the multiplication width. The Zn dopant diffusion front is obtained by numerically simulating the diffusion process. The simulation results indicate that while a local peak value of the electric field is observed near the device edge, it is not associated with a significant increase in the photocurrent response. Experimental photocurrent mapping of an avalanche photodiode shows a response at the edge that is enhanced by ~ 60% compared to the centre response. Scanning electron microscope images of Zn diffused structures show that the depth is enhanced by 0.03 m at the edge, compared to the centre. Simulations of devices with varied multiplication width show that the magnitude of the increase in photocurrent expected for the observed depth enhancement is consistent with the observed photocurrent enhancement along the edge the active device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.