The pyrochlore oxides (A2B2O7) exhibit a remarkable range of structural, physical, and magnetic properties related to their various chemical compositions. This article reports the phase transformations induced by high electronic excitation in pyrochlores of the Gd2(ZrxTi1−x)2O7 family irradiated with swift ions. The structural changes, investigated by using several analytical techniques (x-ray diffraction, Raman spectroscopy, and transmission electron microscopy), strongly depend on the chemical composition. The high electronic excitation along the ion trajectory results in the amorphization of ion tracks for Gd2Ti2O7 and Gd2TiZrO7, whereas a defective fluorite structure is formed in Gd2Zr2O7. Moreover, the results underline the existence of an electronic stopping power threshold of 6 keV/nm for amorphizable compounds and 10 keV/nm for Gd2Zr2O7, below which phase transformations do not occur. Finally, the study of the thermal recovery of irradiated pyrochlores provides the recrystallization temperature for amorphized samples and reveals differences in the recovery process which are related to the chemical composition.
Exceptional size-dependent electronic-ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ∼25 nm, which is the critical region for controlling size-dependent material property. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale. Structural modification by energetic ions is proposed to achieve desirable electronic-ionic conductivity.
This work reports the study, via the combination of Rutherford backscattering spectrometry and channeling, x-ray diffraction, and transmission electron microscopy experiments, of the damage formation in cubic yttria-stabilized zirconia single crystals irradiated with medium-energy (4 MeV) heavy (Au) ions. The damage buildup, which is accounted for in the framework of the multistep damage accumulation model, occurs in three steps. The first step at low fluences (up to 10(15) cm(-2)), characterized by a regular increase in both the damage yield and the elastic strain, is related to the formation of small defect clusters. The second step in the intermediate fluence range (from 10(15) to 5 X 10(15) cm(-2)) leads to a sharp increase in the damage yield and to a large drop of the strain due to the formation of dislocation loops which collapse into a network of tangled dislocations. The third step at high fluences (above 5 X 10(15) cm(-2)) exhibits a surprising decrease in the damage yield, which may be attributed to the reorganization of the dislocation network that leads to the formation of weakly damaged regions with a size of the order of 100 nm. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236567
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.