Small para-H2 clusters (pH2)N with N=2,...,8 have been identified by Raman spectroscopy in cryogenic free jets of the pure gas, near the Q(0) Raman line of the H2 monomer. The high resolution in space, time, and number size makes it possible to follow their growth kinetics with distance from the orifice. At lower source temperatures liquid clusters appear early in the expansion and then undergo a gradual phase transition to the solid state. The technique is very promising for exploring superfluidity in pure (pH2)N clusters.
We present real-time measurements of the crystallization process occurring in liquid para-hydrogen (para-H(2)) quenched to ≈0.65T(m) (T(m)=13.8 K is the melting point of bulk liquid para-H(2)). The combination of high spatial resolution Raman spectroscopy and liquid microjet generation allows, in situ, capturing structural changes with ∼10(-8) s time resolution. Our results provide a crystal growth rate that rules out a thermally activated freezing process and reveal that the quenched melt freezes into a metastable polymorph, which undergoes a structural transition. The achieved temporal control offers new opportunities for exploring the elementary processes of nonequilibrium phase transformations in supercooled liquids.
We report an experimental determination of the k(00-->02) rate coefficient for inelastic H(2):H(2) collisions in the temperature range from 2 to 110 K based on Raman spectroscopy data in supersonic expansions of para-H(2). For this purpose a more accurate method for inverting the master equation of rotational populations is presented. The procedure permits us to reduce the measured k(00-->02) rate coefficient to the corresponding sigma(00-->02) cross section in the range of precollisional energy from 360 to 600 cm(-1). Numerical calculations of sigma(00-->02) carried out in the frame of the coupled channel method are also reported for different intermolecular potentials of H(2). A good agreement is found between the experimental cross section and the numerical one derived from Diep and Johnson's potential [J. Chem. Phys. 112, 4465 (2000)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.