The study of the semiconductor/electrocatalyst interface in electrodes for photoelectrochemical water splitting is of paramount importance to obtain enhanced solar-to-fuel efficiency. Here, we take into consideration the multiple effects that a thin layer of photodeposited amorphous Nioxyhydroxide (NiOOH) induces on hematite (α-Fe 2 O 3 ) photoanodes. The reduction of overpotential produced a photocurrent onset potential advance of 150 mV and an increase of photocurrent of about 50% at 1.23 V vs. RHE. To give an interpretation to these phenomena, we carried out deep electrochemical investigations by cyclic voltammetry and electrochemical impedance spectroscopy. The effective charge injection into the electrolyte due to the reduction of the charge transfer resistance at electrode/electrolyte interface was observed and increased along with the amount of deposited NiOOH. The benefits of NiOOH deposition are ascribable to its ability to scavenge holes from hematite surface traps. This effect is mitigated at potential higher than 1.25 V since a fraction of photogenerated holes is consumed into the Ni redox cycle.
Nanoparticle metal oxide photocatalysts are attractive because of their increased reactivity and ease of processing into versatile electrode formats; however, their preparation is cumbersome. We report on the rapid bulk synthesis of photocatalytic nanoparticles with homogeneous shape and size via the cathodic corrosion method, a simple electrochemical approach applied for the first time to the versatile preparation of complex metal oxides. Nanoparticles consisting of tungsten oxide (HWO) nanoplates, titanium oxide (TiO) nanowires, and symmetric star-shaped bismuth vanadate (BiVO) were prepared conveniently using tungsten, titanium, and vanadium wires as a starting material. Each of the particles were extremely rapid to produce, taking only 2-3 min to etch 2.5 mm of metal wire into a colloidal dispersion of photoactive materials. All crystalline HWO and BiVO particles and amorphous TiO were photoelectrochemically active toward the water oxidation reaction. Additionally, the BiVO particles showed enhanced photocurrent in the visible region toward the oxidation of a sacrificial sulfite reagent. This synthetic method provides an inexpensive alternative to conventional fabrication techniques and is potentially applicable to a wide variety of metal oxides, making the rapid fabrication of active photocatalysts with controlled crystallinity more efficient.
The possibility of cationic (di-oleoyltrimethylammonium propane, DOTAP)/(L-alpha-dioleoylphosphatidyl-ethanolamine, DOPE) liposomes to act as carriers of boronated compounds such as 1,2-dicarba-closo-dodecaboran(12)-1-ylmethyl](beta-D-galactopyranosyl)-(1-->4)-beta-D-glucopyranoside and 1,2-di-(beta-D-gluco-pyranosyl-ox)methyl-1,2-dicarba-closo-dodeca-borane(12) has been investigated by Electron Spin Resonance (ESR) of n-doxyl stearic acids (n-DSA) and Quasi-Elastic Light Scattering (QELS). Both these carboranes have potential use in Boron Neutron Capture Therapy (BNCT), which is a targeted therapy for the treatment of radiation resistant tumors. They were shown to give aggregation both in plain water and in saline solution. Carborane aggregates were, however, disrupted when DOTAP/DOPE liposome solutions were used as dispersing agents. The computer analysis of the ESR spectra from carborane-loaded liposomes allowed to establish an increase of the order degree in the liposome bilayer with increasing carborane concentration, together with a decreased mobility. The same discontinuities of both correlation time and order parameter with respect to temperature variations were observed in carborane-containing and carborane-free liposomes. This suggested that a homogeneous dispersion of nitroxides and carboranes occurred in the liposome bilayer. The ESR line shape analysis proved that no dramatic changes were induced in the liposome environment by carborane insertion. QELS data showed that the overall liposome structure was preserved, with a slight decrease in the mean hydrodynamic radius and increase in polydispersity caused by the guest molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.