This study investigated the effects of cobalt microalloying addition on the microstructural features, thermal characteristics and mechanical behavior of eutectic Sn–0.7wt%Cu lead-free solder alloys. The results show that minor cobalt addition of ~ 0.05 wt% causes significant grain refinement of β-Sn, facilitates the formation of fine fibers (Cu,Co)6Sn5 phases and preventing the formation of η′-Cu6Sn5 phases, whereas a large amount of Co (~ 0.5 wt%) additions accumulated in the (Cu,Co)6Sn5 IMCs and clearly changed into coarse fibers. The precipitation strengthening mechanisms of fine fibers (Cu,Co)6Sn5 in the β-Sn matrix increased the ultimate tensile strength (UTS) and Young’s modulus (Y) of the alloy from 30.5 MPa and 15 GPa to 44.6 MPa and 22.3 GPa, respectively, but the ductility decreased from 60 to 45.7%. The coarse fibers (Cu,Co)6Sn5 in eutectic alloys is of interest from not only increased UTS and Y to 38.7 MPa and 16.3 GPa but also maintaining the ductility at the same level, allowing for unique microstructure design. Furthermore, 0.05wt% of Co significantly reduce the onset, eutectic temperatures and undercooling, although pasty rang has been slightly raised, which may enhance the thermal characteristics. This presumably has important implications for the reliability of solders as well as their performance in electronic service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.