Iran is located at the high altitude region and has a diverse four season climate. The temperature difference of two locations at the same time reaches to 50° C. Therefore, the modern direct injection turbocharged engines are highly affected at this condition. This paper deals with the effects of temperature and pressure variations on the engine performance and fuel consumption of turbocharged gasoline direct injection engine. Ford ecoboost is selected for this study and the base experiments are performed at the sea level. At the next step, a comprehensive one-dimensional model of the engine is constructed in GT power and validated with experimental data. Validated model is implemented to investigate the effects of ambient air variations on the engine performance and fuel consumption. The simulations revealed that low end torque is not highly affected by the temperature increase due to the turbocharging compensation while engine torque is significantly dropped at high engine speeds in the elevated temperatures. At constant air temperature, brake specific fuel consumption is decreased for higher intake pressure up to 3000 rpm and does not change up to 3500 rpm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.