Abstract. In recent years, Unmanned Aerial Vehicles (UAVs) have become popular tools in mapping applications. In such applications, the image motion, bad lighting effects, and poor texture all directly affect the quality of the derived tie points, which in turn imposes constraints on image extraction and may lead to a low accuracy point cloud. This paper proposes a contrast enhancement technique to improve the accuracy of a photogrammetric model created using UAV images. The luminance component (Y) in the YIQ color space is normalized using the sigmoid function, and the low contrast images are enhanced using the Contrast-Limited Adaptive Histogram Equalization (CLAHE) on the luminosity component. To evaluate the proposed method, three-dimensional models were created using images acquired by the Phantom 4 Pro UAV in three distinct places and at altitudes of 20, 40, 60, 80, and 90 meters. The results showed that enhancing the contrast of images increased the number of tie points and reduced reprojection error by approximately 10%. It also improved the resolution of the digital elevation model by approximately 2cm/pixel while greatly improving the texture and quality with respect to that developed using the original images.
Abstract. Keyframes extraction is required and effective for the 3D reconstruction of objects from a thermal video sequence to increase geometric accuracy, reduce the volume of aerial triangulation calculations, and generate the dense point cloud. The primary goal and focus of this paper are to assess the effect of keyframes extraction from the thermal infrared video sequence on the geometric accuracy of the dense point cloud generated. The method of keyframes extraction of thermal infrared video presented in this paper consists of three basic steps. (A) The ability to identify and remove blur frames from non-blur frames in a sequence of recorded frames. (B) The ability to apply the standard baseline condition between sequence frames to establish the overlap condition and prevent the creation of degeneracy conditions. (C) Evaluating degeneracy conditions and keyframes extraction using Geometric Robust Information Criteria (GRIC). The performance evaluation criteria for keyframes extraction in the generation of the thermal infrared dense point cloud in this paper are to assess the increase in density of the generated three-dimensional point cloud and reduce reprojection error. Based on the results and assessments presented in this paper, using keyframes increases the density of the thermal infrared dense point cloud by about 0.03% to 0.10% of points per square meter. It reduces the reprojection error by about 0.005% of pixels (2 times).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.