A Piscirickettsia salmonis infection was diagnosed in lumpfish (Cyclopterus lumpus L.) juveniles held in a marine research facility on the west coast of Ireland. The main clinical signs and pathology included marked ascites, severe multifocal liver necrosis and severe diffuse inflammation and necrosis of the exocrine pancreas and peri-pancreatic adipose tissue. Numerous Piscirickettsia-like organisms were observed by histopathology in the affected organs, and the bacterial species was characterized by molecular analysis. Sequencing of the partial 16S rDNA gene and internal transcribed spacer region showed the lumpfish sequences to be closely related to previously identified Atlantic salmon (Salmo salar L.) sequences from Ireland. To the authors' knowledge, this is the first detection of P. salmonis in lumpfish worldwide. The infection is considered potentially significant in terms of lumpfish health and biosecurity.
A microsporidian species with 98.3-98.4% nucleotide identity to Tetramicra brevifilum (Journal of Fish Diseases, 3, 1980, 495) was diagnosed in lumpfish (Cyclopterus lumpus, L.) broodstock held at a breeding and rearing facility in western Ireland. The fish were wild-caught from the west coast of Ireland, and the first case was diagnosed one year after capture. Clinical signs included severe bloating, lethargy, exophthalmos, anorexia, white patches on the cornea and externally visible parasitic cysts on skin and fins. Necropsy revealed severe ascites, white nodules and vacuoles in all the internal organs and partial liquefaction of the skeletal muscle. On histological examination, microsporidian xenomas were observed in all internal organs, the skin, skeletal muscle, gills and the eyes. The microsporidian species was identified by molecular analysis and transmission electron microscopy. This is the first record of T. brevifilum infecting lumpfish, and the disease is considered to be of potential significance to the rising aquaculture industry of this species.
Methanogenic archaea are key players in cycling organic matter in nature but also in engineered waste treatment systems, where they generate methane, which can be used as a renewable energy source. In such systems in the built environment, complex methanogenic consortia are known to aggregate into highly organized, spherical granular biofilms comprising the interdependent microbial trophic groups mediating the successive stages of the anaerobic digestion (AD) process. This study separated methanogenic granules into a range of discrete size fractions, hypothesizing different biofilm growth stages, and separately supplied each with specific substrates to stimulate the activity of key AD trophic groups, including syntrophic acid oxidizers and methanogens. Rates of specific methanogenic activity were measured, and amplicon sequencing of 16S rRNA gene transcripts was used to resolve phylotranscriptomes across the series of size fractions. Increased rates of methane production were observed in each of the size fractions when hydrogen was supplied as the substrate compared with those of volatile fatty acids (acetate, propionate, and butyrate). This was connected to a shift toward hydrogenotrophic methanogenesis dominated by Methanobacterium and Methanolinea. Interestingly, the specific active microbiomes measured in this way indicated that size was significantly more important than substrate in driving the structure of the active community in granules. Multivariate integration studywise discriminant analysis identified 56 genera shaping changes in the active community across both substrate and size. Half of those were found to be upregulated in the medium-sized granules, which were also the most active and potentially of the most important size, or life stage, for precision management of AD systems. IMPORTANCE Biological wastewater conversion processes collectively constitute one of the single biggest worldwide applications of microbial communities. There is an obvious requirement, therefore, to study the microbial systems central to the success of such technologies. Methanogenic granules, in particular, are architecturally fascinating biofilms that facilitate highly organized cooperation within the metabolic network of the anaerobic digestion (AD) process and, thus, are especially intriguing model systems for microbial ecology. This study, in a way not previously reported, provoked syntrophic and methanogenic activity and the structure of the microbial community, using specific substrates targeting the key trophic groups in AD. Unexpectedly, granule size more strongly than substrate shaped the active portion of the microbial community. Importantly, the findings suggest the size, or age, of granules inherently shapes the active microbiome linked to a life cycle. This provides exciting insights into the function of, and the potential for additional modeling of biofilm development in, methanogenic granules.
Background In this study, individual anaerobic granular biofilms were used as true community replicates to assess whole-microbial-community responses to environmental cues. The aggregates originated from three different biomass sources, i.e. three different engineered biological wastewater treatment systems, were each size-separated into three fractions – small, medium and large – and characterised according to organic matter concentrations and rates of methanogenic activity. Differences in the microbial community structure of each size fraction from each source were determined using 16S rRNA gene sequencing. Subsequently, single granules from the large size fraction of one of the sources were separately subjected controlled environmental cues in novel micro batch reactors (mBRs). Results Organic content, methanogenic activity, and microbial community were significantly different between the three size fractions, with diversity trajectories replicated across the three sludge sources – indicating a potential development model as granules age. Individual large granules from one of these sources were statistically identical with respect to the structure of the active community based on cDNA analysis. It was observed that the active microbial community of individual granules, at the depth of 16S rRNA sequencing, produced reproducible responses to environmental conditions. While each condition resulted in the up-regulation of particular OTUs and clades, the core microbiome, consisting of many fermentative bacteria along with methanogenic archaea, namely, Methanosarcina and Methanobacterium , persisted. Conclusions At this level, single anaerobic granules can be considered highly-replicated whole-ecosystems, opening the door to high-throughput studies in Microbial Ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.