Psychological research centers help indirectly contact professionals from the fields of human life, job environment, family life, and psychological infrastructure for psychiatric patients. This research aims to detect job apathy patterns from the behavior of employee groups in the University of Baghdad and the Iraqi Ministry of Higher Education and Scientific Research. This investigation presents an approach using data mining techniques to acquire new knowledge and differs from statistical studies in terms of supporting the researchers’ evolving needs. These techniques manipulate redundant or irrelevant attributes to discover interesting patterns. The principal issue identifies several important and affective questions taken from a questionnaire, and the psychiatric researchers recommend these questions. Useless questions are pruned using the attribute selection method. Moreover, pieces of information gained through these questions are measured according to a specific class and ranked accordingly. Association and a priori algorithms are used to detect the most influential and interrelated questions in the questionnaire. Consequently, the decisive parameters that may lead to job apathy are determined.
Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using a training data rather than cross validation. The decision tree algorithm J48 is applied to detect and generate the pattern of attributes, which have the real effect on the class value. Furthermore, the experiments are performed with three machine learning algorithms J48 decision tree, simple logistic, and multilayer perceptron using 10-folds cross validation as a test option, and the percentage of correctly classified instances as a measure to determine the best one from them. As well as, this investigation used the iteration control to check the accuracy gained from the three mentioned above algorithms. Hence, it explores whether the error ratio is decreasing after several iterations of algorithm execution or not. Conclusion It is noticed that the error ratio of classified instances are decreasing after 5-10 iterations, exactly in the case of multilayer perceptron algorithm rather than simple logistic, and decision tree algorithms. This study realized that the TPS_pre is the most common effective attribute among three main classes of examined dataset. This attribute highly indicates the BC inflammation.
Pre-eclampsia is a multisystem disorder of pregnancy, which complicates 3%-5% of pregnancies in the world .The present study deals with estimation of levels of Osteopontin, Inhibin B, protein, albumin, globulin and Alb./Glb. ratio in forty five Pregnant Women with Preeclampsia in comparison with thirty healthy Pregnant Women. In Pregnant Women with Preeclampsia, the level of Osteopontin and Inhibin B were significantly higher as compared to the normal subjects [p<0.01]. In Pregnant Women with Preeclampsia the levels of S. calcium S.Protein and albumin were significantly decreased as compared to the normal subjects [p<0.05, p<0.05and p<0.01] respectively. Based on findings of the present study, it can be concluded that Patients with Preeclampsia had significantly higher serum inhibin B and Osteopontin concentrations compared to healthy pregnant women. In addition, the current study could not determine any links between Osteopontin levels and other biochemical markers in this study.
Data mining is one of the most popular analysis methods in medical research. It involves finding patterns and correlations in previously unknown datasets. Data mining encompasses various areas of biomedical research, including data collection, clinical decision support, illness or safety monitoring, public health and inquiry research. Health analytics frequently uses computational methods for data mining, such as clustering, classification, and regression. Studies of large numbers of diverse heterogeneous documents, including biological and electronic information, provided medical and health studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.