The effect of nitrate addition on microbial H2S production in a seawater-flooded oil reservoir model column with crude oil as carbon and energy source was investigated. Injection of 0.5 mM nitrate for 2.5-3.5 months led to complete elimination of H2S (initially 0.45-0.67 mM). The major decline in H2S level coincided with the first complete nitrate consumption and production of nitrite. When nitrate was excluded, H2S production resumed after approximately 2.5 months and reached previous levels after approximately 5 months. Using a fluorescent antibody technique, three populations each of sulfate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) were monitored. SRB dominated the anoxic zone prior to nitrate addition, comprising 64-93% of the total bacterial population. The monitored NRB constituted less than 6% and no increase was observed during nitrate addition (indicating that other, unidentified, NRB populations were present). After 1-3 months without significant H2S production (3.5-5.5 months with nitrate), the SRB population collapsed, the fraction being reduced to 9-25%. The dominant SRB strain in the column, which constituted on average 94% of the monitored SRB population, was partly/completely inhibited by 50/75 microM nitrite in batch culture tests. Similar nitrite concentrations (50-150 microM) were detected in the column when the H2S level declined, indicating that nitrite inhibition was the main cause of H2S elimination. The results from this study indicate that nitrate/nitrite can be used to prevent detrimental SRB activity in oil reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.