The strength of the centrifugal pump is crucial to ensure the safe pump operating when endure to unintended pumping condition. The presence of the solid particles and sudden increase of pressure may lead to the damage on the casing of a centrifugal pump and it becomes critical when the thickness of the casing is thin. This study aims to investigate the effects of the thickness on the mechanical aspects such as stress, strain and displacement in the casing design by using finite element (FE) analysis. The structure of the pump casing with various thicknesses is analyzed via FE-based software. The correlation of the wall thickness with the mechanical aspects is studied. The critical region with high stress was spotted in the simulation. The simulation results revealed the wall thickness demonstrated a polynomial correlation to the displacement and strain. The stress of the casing showed the linear correlation with the thickness. The critical region was noticed at the intersection region of the pump casing. The mechanical aspects of the pump casing were improved with the increment of the wall thickness in the pump casing design.
Fluidization is characterized as an activity that transforms fine solids into a liquid-state via contact with either a gas or a liquid. Currently, Swirling Fluidized Bed (SFB) is one of the new system that contribute on flow mixing to the beds due to the gas source which impart on the solid particles. Further the fluidized beds system are used mostly in the chemical process industry, mineral processing, processes energy and etc. Based on the current fluidized bed system there are still lacking in reducing high pressure drop and keep the energy consumption at high efficient condition. Due to this tips, the conceptual design of a multi-stages SFB was proposed to improve fluidization quality and minimize elutriation at the same time without requiring any extra facilities. By using the simulation method (Ansys Fluent) the behavior of velocity component via selected configuration of fix blades number (30) and through to variant of blade horizontal inclination angle (10°, 12° & 15°) the multi-stage SFB will be investigate. Aims of this study is to identify the air flow behavior at first and second stage blade distributor. Therefore, effect with less blades number in producing on high uniformity velocity would be acquired. The present study has found that by using blade inclination angle of 10° the high velocity magnitude (more than 60 m/s) at two different level of stage distributor can be reached. Moreover, it clearly be seen at blade inclination angle, 15° the velocity uniformity was sustain at certain width and less superficial velocity value occurred compared to other configurations.
The concept of an eco-industrial park (EIP) that promotes resource sharing, reutilization of waste, and exchange of materials among industries and communities brings significant benefits in terms of environmental, social, and economic aspects. EIP can be accomplished with the aid of blockchain technology to manage data and integration complexity and problem dimensionality. This work proposes the application of blockchain technology in combination with other Industry 4.0 (IR4.0) technologies as enablers for EIP development. We review the international frameworks for EIP and the IR4.0 principles and applications focusing on blockchain technology to evaluate the suitability of blockchain technology integration into the green industrial park concept. An illustrative model of a blockchain-based EIP data management platform has been proposed in this work as a starting point for exploring the full potential of this technology for future EIP applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.