Climate change is predicted to alter the canopy phenology of temperate and boreal forests, which will affect carbon, water, and energy budgets. Therefore, there is a great need to evaluate remotely sensed products for their potential to accurately capture canopy dynamics. The objective of this study was to compare several products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) to field measurements of fraction photosynthetically active radiation (FPAR) and plant area index (PAI) for a deciduous broadleaf forest in northern Wisconsin in 2002. MODIS products captured the general phenological development of the canopy although MODIS products overestimated the leaf area during the overstory leaf out period. Field data suggest that the period from budburst to canopy maturity, or maximum PAI, occurred in 10 to 12 days while MODIS products predicted onset of greenness and maturity from 1 to 21 days and 0 to 19 days earlier than that from field observations, respectively. Temporal compositing of MODIS data and understory development are likely key factors explaining differences with field data. Maximum PAI estimates differed only by 7% between field derived and MODIS-based estimates of LAI. Implications for ecosystem modeling of carbon and water exchange and future research needs are discussed.
[1] We quantified canopy transpiration (E C ) using sap flux measurements representing the four major forest types (northern hardwoods, conifer, aspen/fir, and forested wetland) around the WLEF-TV tall tower in northern Wisconsin. In order to scale individual sap flux measurements to E C , we quantified the amount of sapwood area per unit ground area and the spatial distribution of sap flux within trees. Contrary to our hypothesis that all tree species would have the same positive relationship between tree diameter and sapwood depth, white cedar and speckled alder, both wetland species, showed no relationship. We also hypothesized that the conifer trees would have a lower whole tree hydraulic conductance than deciduous trees. We actually discovered that white cedar had the highest hydraulic conductance. Our third hypothesis, that sapwood area per unit ground area would determine stand E C , was not rejected. The resulting average daily E C values over 53 days (23 June to 16 August 2000) from combining sap flux and sapwood area per unit ground area were 1.4, 0.8, 2.1, and 1.4 mm d À1 for conifer, northern hardwoods, aspen/fir, and forested wetland cover types, respectively. Average daily E C was only explained by an exponential saturation with daily average vapor pressure deficit.
Forest management presents challenges to accurate prediction of water and carbon exchange between the land surface and atmosphere, due to its alteration of forest structure and composition. We examined how forest species types in northern Wisconsin affect landscape scale water fluxes predicted from models driven by remotely sensed forest classification. A site‐specific classification was developed for the study site. Using this information and a digital soils database produced for the site we identified four key forest stand types: red pine, northern hardwoods, aspen, and forested wetland. Within these stand types, 64 trees representing 7 species were continuously monitored with sap flux sensors. Scaled stand‐level transpiration from sap flux was combined with a two‐source soil evaporation model and then applied over a 2.5 km × 3.0 km area around the WLEF AmeriFlux tower (Park Falls, Wisconsin) to estimate evapotranspiration. Water flux data at the tower was used as a check against these estimates. Then, experiments were conducted to determine the effects of aggregating vegetation types to International Geosphere– Biosphere Program (IGBP) level on water flux predictions. Taxonomic aggregation resulting in loss of species level information significantly altered landscape water flux predictions. However, daily water fluxes were not significantly affected by spatial aggregation when forested wetland evaporation was included. The results demonstrate the importance of aspen, which has a higher transpiration rate per unit leaf area than other forest species. However, more significant uncertainty results from not including forested wetland with its high rates of evaporation during wet summers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.