The synthesis of new styryl dyes derived from 4-pyridine and 4-quinoline and having an ammonioalkyl N-substituent and benzocrown ether moieties of different sizes and with different sets of heteroatoms was developed. Spontaneous "head-to-tail" dimerization of these dyes via the formation of numerous hydrogen bonds between the terminal NH3(+) groups and crown ether moieties was detected in MeCN solutions. The stability constants of the dimeric complexes having pseudocyclic structure were studied by (1)H NMR titration. The most stable complexes (log Kd up to 8.2) were found in the case of dyes with the 18-crown-6 ether moiety, which is most complementary for binding a primary ammonium group. Stacking interaction of the conjugated systems in the dimeric complexes contributes to their stability to a much lesser extent. In dimeric complexes, the ethylene bonds of the dyes are preorganized for stereospecific [2 + 2] photocycloaddition (PCA) induced by visible light. PCA yields only rctt isomers of bis-crown-containing cyclobutane derivatives. The dyes were studied by X-ray diffraction; it was found that the dimeric arrangement is also retained in the crystalline state. The possibility of topochemical PCA of the dyes in single crystals without their destruction was demonstrated. The possibility of retro-PCA of the obtained cyclobutane derivatives to give the starting dyes was shown. The elucidated regularities of PCA can be used to fabricate optical data recording systems based on ammonioalkyl derivatives of crown ether styryl dyes.
A series of palladium(II) complexes with nitro- and formylbenzothiacrown-ether derivatives was synthesized. The spatial structure of the complexes was studied by NMR, X-ray diffraction analysis, and quantum chemical calculations (density functional theory). The cavity size and the ligand denticity were found to be crucial factors determining the geometric configuration of the thiacrown-ether complexes. Palladium(II) complexes with benzodithia-12(18)-crown-4(6) ethers were demonstrated to have a cis-configured S(2)PdY(2) fragment (Y = Cl, OAc). In the case of Pd(II) and benzodithia-21-crown-7 ethers, only complexes with a trans configuration of the S(2)PdY(2) fragment form. In the case of Pd(II) and nitrobenzomonothia-15-crown-5 ether, only 2(ligand):1(Pd) complex with trans configuration of the core fragment forms.
Novel 2-benzothiazole-, 4-pyridine-, and 2- and 4-quinoline-based styryl dyes containing an N-methylbenzoaza-15(18)-crown-5(6)-ether moiety were synthesized. A detailed electronic spectroscopy study revealed high performance of these compounds as optical molecular sensors for alkali and alkaline-earth metal cations. They were shown to considerably surpass analogous chromoionophores based on N-phenylaza-crown ethers regarding both the ionochromism and the cation-binding ability. In addition, they act as fluorescent sensors for the metal cations by demonstrating cation-triggered emission. Upon complexation with Ba(2+), the fluorescence enhancement factor reaches 61. The structural features of dyes and their metal complexes were studied by NMR spectroscopy and X-ray diffraction. The high degree of macrocycle preorganization was found to be one of the factors determining the high cation-binding ability of the sensor molecules based on N-methylbenzoaza-crown ethers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.