A sol-gel based TiO 2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.
This paper reports the thermo physical characteristics of Vitrified tile polishing waste materials. As such growing production of vitrified tiles in the country generate large volume of this waste obtained during processing, polishing and cutting of the vitrified tiles to the tune of nearly 10-15 tonnes per day from each plant. The characteristic features of these materials are being studied and investigated to develop suitable technology for finding its gainful use especially in the traditional ceramics. It is known that ceramic as such building materials industry could be a large raw materials consumer and being heterogeneous and thus could utilize this vast quantity as the raw materials. However, the main problem would be it's firing nature as it showed thermal deformation after a particular temperature. Interestingly, the production process of most of the traditional ceramics follows a similar pattern starting from the raw materials processing up to a level of firing. Hence, to suggest suitable utility in the traditional ceramics as raw materials, it was the prime requisite that these waste must be thoroughly studied w. r. t various thermo physical characteristics to make use in this sectors. Hence, the present paper interestingly gone up to various study such as raw materials nature, particle size distribution, chemistry, XRD and DTA study for understanding typical physico chemical properties, and finally thermal properties to make it suitable for use in traditional ceramic industries. The higher fineness of the waste materials indicates its usefulness without extra grinding. The chemistry of typical sludge shows contamination from abrasive particles, sorrel cement bonding materials etc. originated from the polishing wheel and needs special precaution while suggesting use in the ceramic sectors. The firing characteristics of the sludge materials produces a foamy and spongy shapes and this could be the main guiding parameters in selecting the end use of the waste materials w. r. t temperature. The present study only shows various characteristic features of this waste and focuses its important properties to be used as a raw material in large quantity in the ceramic industries.
Different kaolin clay specimen exhibit varying colours after firing depending upon the relative presence of different mineral impurities, physical state of mineral constituents etc. Spectrophotometers used for determining colour values generate many sets of colour data. Interpretation of such colour values is a subjective matter. Increase in darkness, yellowness etc as a consequence of increase in chromophore impurity content in kaolin clay have been shown. However, the inverse of above ie; gradual change in colour values along with gradual change in chromophore impurity content over a realistic range has not been studied. Whether the colour data of kaolin clay after firing can be taken up as a function of impurity content needs to be investigated. Thus, to identify the correlation between kaolin clay impurity content and it's fired colour data the present investigation examined the hypotheses i) The colour development after firing of kaolin clay is an indicator of chromophore impurity content present therein and ii) All the colour variables (L, a, b, ISO2470, redness) constituting a colour data set of pressed kaolin clay specimen after firing will vary in similar manner such that to represent variation in impurity content. The study indicated that the colour values obtained by spectrophotometry of clay specimens after firing represent the chromophore impurity present therein in a less reliable manner. To relatively estimate the quantity of chromophore impurity present in a clay sample from its fired colour, the sample should be mixed with 50% by weight of potash feldspar, pressed in to tablet suitable for colour measurement and fired at or above 1220°C to vitrify. After that the ‘L’, ‘a’ and ‘ISO2470’ values obtained truly represent the chromophore present therein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.