To achieve high quality products from Plastic Injection Molding (PIM) process it is very essential to identify the defective operations in automatic manner which is most challenging task. This paper proposes a Machine Learning (ML) approach to detect the complex faults occurrence during the PIM process. During initial sampling process of molding to achieve high quality and low time consumption it is essential to concentrate on the suitable determination of parameter values by considering the properties of injection molding process. For that purpose, a novel machine learning algorithms based gating system is introduced in PIM (MLGS-PIM). Technical evaluation can be done using simulation which combines the CATIA and MATLAB. Therefore in MLGS-PIM, a holistic approach is introduced to improve and predict the process quality of the parameters which is based on machine learning approaches. The considered machine learning approaches for this process are Artificial Neural Network (ANN) and Support Vector Machine (SVM). This two learning models are combined to achieve high quality under various conditions. Such novel ML based technique helps to increase the quality characteristics of the injection molding process and it is predicted with various parameter values where the simulation data and measurements are handled in an intelligent manner. The materials which are considered in the PIM process are thermoplastic polystyrene, thermoplastic acrylonitrile butadiene styrene and thermoplastic polyvinyl chloride where three types are gating systems are applied with it and consists of 3, 4 and 5 gates and as well the parameters which are measured for the output analysis are sum rate, bit error rate and convergence plot. The results show that the performance of the proposed MLGS-PIM approach significantly increases the performance when compared with the earlier approaches such as AntLion Optimization and PSO-MSQPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.