This paper presents a systematized review of the research on the production of nanosecond high-power pulses using solid-state generators based on an inductive energy store and a semiconductor opening switch that have been performed in the past 25 years. This research has been underway since 1992–1993 when the nanosecond cutoff of ultrahigh-density currents in semiconductor diodes was discovered and named the SOS (Semiconductor Opening Switch) effect. The discovery of the SOS effect provided a breakthrough in the development of semiconductor generators, as their most important characteristics, such as pulse power and output voltage, were increased tens and hundreds of times compared with previously known semiconductor generators. In particular, in the nanosecond semiconductor technology, megavolt voltages combined with gigawatt peak powers have been achieved. This review considers the main physical processes that determine the mechanism of operation of a SOS based on the SOS effect. The principle of operation, design, and characteristics of SOS diodes and SOS generators is described, and prospects for their further development are discussed. Examples are given of using SOS generators in various pulsed power applications such as electron accelerators, X-ray pulse devices, high-power microwave electronics, pumping of gas lasers, and ignition of electrical discharges.
This article presents results of theoretical and experimental studies on the production of ultrashort~a few RF cycles duration! microwave pulses of gigawatt peak powers based on superradiance from high-current electron beams. With the Cherenkov backward-wave-electron-beam interaction in a low-dispersion slow-wave structure, microwave pulses with a peak power greater than the peak power of the driving electron beam have been produced for the first time. In an experiment using the SINUS-150 compact high-current electron accelerator, with a 2.6-kA injected beam current and a 330-kV electron energy, microwave pulses of 1.2 GW peak power and ;0.5 ns duration~FWHM! were generated in the X-band. Production of superradiance pulses in a repetitive regime~3500 Hz! in the Ka-band has been demonstrated using a compact hybrid SOS-modulator. The effect of spatial accumulation of microwave energy in extended slow-wave structures with substantially nonuniform coupling has been demonstrated. In an experiment using the SINUS-200 compact accelerator, X-band pulses of ;3 GW peak power and 0.6-0.7 ns width~FWHM! were produced with a power conversion efficiency of 150-180% and an energy efficiency of ;15%.Calculations performed with various D J values have shown the following: With any value of j k . . 1, the optimum value of D J must be such~D J opt ; exp~Ϫj k !! that the region where the amplitude of the RF current saturates due to the non-188 A. A. Eltchaninov et al.
The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ∼1.5 GW/cm2 required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due to time delay in the development of the breakdown phenomena.
We demonstrate both theoretically and experimentally the possibility of correlating the phase of a Cherenkov superradiance (SR) pulse to the sharp edge of a current pulse, when spontaneous emission of the electron bunch edge serves as the seed for SR processes. By division of the driving voltage pulse across several parallel channels equipped with independent cathodes we can synchronize several SR sources to arrange a two-dimensional array. In experiments carried out, coherent summation of radiation from four independent 8-mm wavelength band SR generators with peak power 600 MW resulted in the interference maximum of the directional diagram with an intensity that is equivalent to radiation from a single source with power 10 GW. Numerous scientific and technological applications stimulate interest in the generation of ultra-high power coherent radiation. Approaches that can be suggested to achieve this goal include the generation of radiation by a single source with an oversized electrodynamic system. In this case special methods (for example, 2D distributed feedback [1,2]) are required to produce spatially coherent radiation. Another method is the synchronization of a large number of moderate-power sources using a master oscillator [3][4][5]. DOIAt the same time for short-pulse sources, in particular, for sources based on Cherenkov superradiance (SR) of extended electron bunches moving in a slow wave structure (SWS) [6,7], there is an alternative opportunity, associated with the correlating the phase of a radiated pulse to the sharp edge of a current pulse. In fact, spontaneous emission of the bunch edge serves as the seed for SR processes. It gives rise to the stimulated emission including electron self-bunching and subsequent radiation of the short high-power electromagnetic pulse. If identical current pulses are sent simultaneously to several channels, identical SR pulses will be generated and the coherent summation of their amplitudes is possible. For two channel radiation sources such a possibility has been experimentally demonstrated in Ref. [8]. However the physical model describing the transformation of spontaneous Cherenkov radiation (i.e. the radiation from the unperturbed moving particles without the reverse effect of the field [9]) to stimulated radiation is still missing. The
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.