Forward osmosis (FO) is an emerging osmotic process that has been extensively investigated in the past decade. There are many literatures, discussing on the available methods in producing FO membranes as well as researches that emphasis on the type of FO membranes. The quality of the FO membrane often valued based on its intrinsic parameters and its morphological characteristics. Unlike the intrinsic parameters, the surface characteristics regularly described in adjectives thus it is hardly to be consistent. This paper presents a comprehensive review on surface characterization specifically for FO membranes. Regardless the types of FO membranes, the surface characterization comprises of FTIR, XPS, FESEM/SEM, AFM and contact angle were discussed in the way that how the findings should be reported. Thus, through this work, the relevant discussion that should be measured and included when deliberating the analysis result for FO membranes is presented. Insufficient and misinterpreted characterization data might have not changed the novelty fact of the research, yet it may lead to lower its impact. A strong connection between the intrinsic values and surface characteristics would have been compromised as well.
In the application of forward osmosis, commercial nanofiltration (NF) membrane was modified via ultraviolet(UV)-photografting technique at different grafting parameters; monomer concentration (acrylic acid) and grafting time. However, the performance of the modified membrane measured at the osmotic pressure of 1M NaCl as draw solution limits their applications. In this research, the mathematical modelling was applied to predict the water flux at different osmotic pressure. The mathematical modelling indicated that the generated water flux follows the osmotic pressure but strictly affected by the grafting parameters. The result shows that at grafting time of 3min, the monomer concentration of 15 g/L generates the highest water flux followed by the membrane modified at the monomer concentration of 30 g/L. High water flux was attributed to the presence of strongly hydrophilic groups at new carboxyl layers leading to improved membrane properties. The approach of theoretical modelling on the membrane that is reported in this work allows estimating the water flux at different grafting parameter.
UV irradiation is one of the procedures that has been considered for membrane surface graft polymerization. It is commonly utilized for enhancing the wettability of polyethersulfone (PES) membranes. In this research study, the monomer methacrylic acid (MAA) was used for the UV grafting process of a commercial NF2 PES membrane for the preparation of a forward osmosis (FO) membrane. Three different monomer concentrations and three different UV irradiation times were considered. The intrinsic characteristics of both the surface-modified and pristine membranes were determined via a non-pressurized test method. Compared to the NF2 PES, the surface of the modified membranes was rendered more hydrophilic, as the measured water contact angle was reduced considerably from 65° to 32–58°. The membrane surface modification was also confirmed by the data collected from other techniques, such as atomic force microscopy (AFM), field emission-scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy–attenuated total reflectance (FTIR–ATR). Additionally, the modified membranes exhibited a greater water permeate flux (Jw) compared to the NF2 PES membrane. In this study, the water permeability (A), solute permeability (B) and structural parameter (S) were determined via a two-stage FO non-pressurized test method, changing the membrane orientation. Compared to the FO pressurized test, smaller S values were obtained with significantly high A and B values for the two non-pressurized tests. The adopted method in the current study is more adequate for determining the intrinsic characteristics of FO membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.