The Cenozoic history of the retreating Hellenic subduction system in the eastern Mediterranean involves subduction, accretion, arc magmatism, exhumation, normal faulting, and large-scale continental extension from ∼60 Mya until the Recent. Ages for high-pressure metamorphism in the central Aegean Sea region range from ∼53 Ma in the north (the Cyclades islands) to ∼25−20 Ma in the south (Crete). Younging of high-pressure metamorphism reflects the southward retreat of the Hellenic subduction zone. The shape of pressure-temperature-time paths of high-pressure rocks is remarkably similar across all tectonic units, suggesting a steady-state thermal profile of the subduction system and persistence of deformation and exhumation styles. The high-pressure metamorphic events were caused by the underthrusting of fragments of continental crust that were superimposed on slab retreat. Most of the exhumation of high-pressure units occurred in extrusion wedges during ongoing lithospheric convergence. At 23–19 Mya large-scale lithospheric extension commenced, causing metamorphic core complexes and the opening of the Aegean Sea basin. This extensional stage caused limited exhumation at the margins of the Aegean Sea but accomplished the major part of the exhumation of high-grade rocks that formed between 21 and 16 Mya in the central Aegean. The age pattern of extensional faults and contoured maps of fission-track cooling ages do not show a simple southward progression. Our review of lithologic, structural, metamorphic, and geochronologic data is consistent with a temporal link between the draping of the subducted slab over the 660-km discontinuity and the large-scale extension causing the opening of the Aegean Sea basin.
Theoretical analysis predicts that enhanced erosion related to late Cenozoic global cooling can act as a first-order influence on the internal dynamics of mountain building, leading to a reduction in orogen width and height. The strongest response is predicted in orogens dominated by highly efficient alpine glacial erosion, producing a characteristic pattern of enhanced erosion on the windward flank of the orogen and maximum elevation controlled by glacier equilibrium line altitude, where long-term glacier mass gain equals mass loss. However, acquiring definitive field evidence of an active tectonic response to global climate cooling has been elusive. Here we present an extensive new low-temperature thermochronologic data set from the Patagonian Andes, a high-latitude active orogen with a well-documented late Cenozoic tectonic, climatic and glacial history. Data from 38° S to 49° S record a marked acceleration in erosion 7 to 5 Myr ago coeval with the onset of major Patagonian glaciation and retreat of deformation from the easternmost thrust front. The highest rates and magnitudes of erosion are restricted to the glacial equilibrium line altitude on the windward western flank of the orogen, as predicted in models of glaciated critical taper orogens where erosion rate is a function of ice sliding velocity. In contrast, towards higher latitudes (49° S to 56° S) a transition to older bedrock cooling ages signifies much reduced late Cenozoic erosion despite dominantly glacial conditions here since the latest Miocene. The increased height of the orogenic divide at these latitudes (well above the equilibrium line altitude) leads us to conclude that the southernmost Patagonian Andes represent the first recognized example of regional glacial protection of an active orogen from erosion, leading to constructive growth in orogen height and width.
The Patagonian Andes record a period of Cretaceous‐Neogene orogenesis that began with the compressional inversion of a Late Jurassic rift called the Rocas Verdes basin. Detrital zircon ages from sediment that filled the southern part of the basin provide a maximum depositional age of ∼148 Ma, suggesting that the basin opened approximately simultaneously along its length during the Late Jurassic. Structural data and U‐Pb isotopic ages on zircon from granite plutons near the Beagle Channel (55°S) show that basin inversion involved two stages of shortening separated by tens of millions of years. An initial stage created a small (∼60 km wide) thrust wedge that placed the basaltic floor of the Rocas Verdes basin on top of adjacent continental crust prior to ∼86 Ma. Structures and metamorphic mineral assemblages preserved in an exhumed middle to lower crustal shear zone in Cordillera Darwin suggest that this obduction was accompanied by south directed subduction of the basaltic crust and underthrusting of continental crust to depths of ∼35 km beneath a coeval volcanic arc. A subsequent stage of out‐of‐sequence thrusting, culminating in the Paleogene, shortened basement and Upper Jurassic igneous rock in the internal part of the belt by at least ∼50 km, forming a bivergent thrust wedge. This latter period coincided with the exhumation of rocks in Cordillera Darwin and expansion of the fold‐thrust belt into the Magallanes foreland basin. This orogen provides an important example of how orogenesis initiated and led to continental underthrusting and obduction of basaltic crust during closure of a quasi‐oceanic rift basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.