Postnatal treatment with bacterial endotoxin lipopolysaccharide (LPS) changes the activity of the hypothalamic-pituitary-gonadal (HPG) axis and the gonadotropin-releasing hormone (GnRH) surge in rats. Exposure to an immune challenge in the critical periods of development has profound and long-lasting effects on the stress response, immune, metabolic, and reproductive functions. Prenatal LPS treatment delays the migration of GnRH neurons associated with increased cytokine release in maternal and fetal compartments. We investigated the effects of a single maternal exposure to LPS (18 μg/kg, i.p.) on day 12 (embryonic day (E)12) of pregnancy on reproductive parameters in rat offspring. Hypothalamic GnRH content, plasma luteinizing hormone (LH), testosterone, and estradiol concentrations were measured in both male and female offsprings at different stages of postnatal development by RIA and ELISA (n = 10 each per group). Body weight and in females day of vaginal opening (VO) were recorded. In offspring exposed to LPS prenatally, compared with controls, body weight was decreased in both sexes at P5 and P30; in females, VO was delayed; hypothalamic GnRH content was decreased at postnatal days 30-60 (P30-P60) in both sexes; plasma LH concentration was decreased at P14-P60 in females; plasma concentrations of testosterone/estradiol were increased at P14 in females, and plasma estradiol was increased at P14 in males. Hence activation of the maternal immune system by LPS treatment at a prenatal critical period leads to decreased GnRH and LH levels in pre- and postpubertal life and sex steroid imbalance in the prepubertal period, and delayed sexual maturation of female offspring.
This study was designed to test the authors' hypothesis that dopamine passes from dopamine-synthesizing cells in the brain to the systemic circulation prior to the formation of the blood-brain barrier during ontogenesis. High-performance liquid chromatography studies demonstrated that peripheral blood dopamine levels before formation of the blood-brain barrier-in rat fetuses and neonates-are significantly higher than after formation of the barrier in adult rats, providing indirect evidence in support of the hypothesis. Furthermore, formation of the blood-brain barrier is accompanied by a significant increase in dopamine levels in the rat brain. Direct evidence for the hypothesis was obtained in the form of a sharp decrease in blood dopamine levels in fetuses after lesioning of dopamine-synthesizing neurons in the brain by encephalectomy.
An increasing body of recent experimental data confirms the impact of neurohormones on fetal development and function of different body systems. The synthesis of many neurohormones starts in fetal tissues before the hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal systems are formed, and their high levels are detected in the bloodstream. Here, we studied the role of gonadotropin-releasing hormone (GnRH) in rat thymus development and tried to reveal possible mechanisms underlying the GnRH effects in early development. Western blotting and reverse transcription-polymerase chain reaction allowed us to identify receptor for GnRH in the fetal thymus with peak expression on embryonic days 17–18 (ED17–18). Blocking the receptors in utero on ED17 by a GnRH antagonist suppressed the concanavalin A-induced proliferative response of T cells in adults. GnRH (10−7 M) increased mRNA expression of interleukin (IL)-4, IL-10, IL-1β, interferon γ (IFNγ), and tumor necrosis factor α (TNFα) in the thymus of 18-day fetuses after an ex vivo culture for 24 h. The increased mRNA levels of the cytokines in the thymus were accompanied by increased numbers of CD4+ T helpers. Overall, the data obtained confirm the regulatory or morphogenetic effect of GnRH on fetal thymus development mediated by synthesis of thymic cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.