An area of 0.6 km(2) in the manganese nodule field of the Central Indian Basin was physically disturbed and sediments discharged in the near bottom waters to simulate seabed mining and study its impact on benthic ecosystem. An estimated 2 to 3 tonnes of sedimentary organic carbon (C(org)) was resuspended into the water column during a 9-day experiment. The majority of the sediment cores from within the disturbed area and areas towards the south showed a ~30% increase in C(org) content as well as an increase in carbon burial rates after disturbance, though with a reduction in carbon/phosphorus ratios. High specific surface area (SSA~25 m(2) g(-1)) and low C(org)/SSA ratios (mostly <0.5) are typical of deep-sea sediments. The increased C(org) values were probably due to the organic matter from dead biota and the migration and redeposition of fine-grained, organic-rich particles. Spatial distribution patterns of C(org) contents of cores taken before and after disturbance were used to infer the direction of plume migration and re-sedimentation. A positive relationship was observed between total and labile C(org) and macrobenthos density and total bacterial numbers prior to disturbance, whereas a negative relationship was seen after disturbance owing to drastic reduction in the density of macrofauna and bacteria. Overall decrease in labile organic matter, benthic biota and redistribution of organic matter suggest that the commercial mining of manganese nodules may have a significant immediate negative effect on the benthic ecosystem inducing changes in benthic community structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.