Cloud computing has emerged as a new technology across organization and cooperates that impacts several different research fields, including software testing. To provide a cloud service and sharing resources successfully, the cloud must be tested before it comes into offering services. Testing the applications has their own testing tools and testing methodologies. In this paper we provide an overview regarding cloud computing trends, types, challenges, tools and the comparison of tools for cloud testing.
One of the most critical aspects of quality assurance is inspecting products for defects before they are sold or shipped. A good product is more vital than having more of the same item for a customer’s enjoyment. The client has a significant role in determining the quality of a product. Another way to think about quality is as the total of all the characteristics that contribute to the creation of items that the client enjoys. Recently, the application of machine vision and image processing technology to improve the surface quality of fruits and other foods has increased significantly. This is primarily because these technologies make significant advancements in areas where the human eye falls short. This means that, by utilizing computer vision and image processing techniques, time-consuming and subjective industrial quality control processes can be eliminated. This article discusses how to check and assess food using picture segmentation and machine learning. It is capable of classifying fruits and determining whether a piece of fruit is rotten. To begin, Gaussian elimination is used to remove noise from images. Then, photos are subjected to histogram equalization in order to improve their quality. Segmentation of the image is carried out using the K-means clustering technique. Then, fruit photos are classified using machine learning methods such as KNN, SVM, and C4.5. These algorithms determine if a fruit is damaged or not.
Lung cancer is a deadly disease showing uncontrolled proliferation of malignant cells in the lungs. If the lung cancer is detected in early stages, it can be cured before critical stage. In recent years, new technologies have gained much attention in the healthcare industry however, the unpredictable appearance of tumors, finding their presence, determining its shape, size and high discrepancy in medical images are the challenging tasks. To overcome this issue a novel Ant lion-based Autoencoders (ALbAE) model is proposed for efficient classification of lung cancer and pneumonia. Initially Computed Tomography (CT) images are pre-processed using median filters to remove noise artifacts and improving the quality of the images. Consequently, the relevant features such as image edges, pixel rates of the images and blood clots are extracted by ant lion-based autoencoder (ALbAE) technique. Finally, in classification stage, the lung CT images are classified into three different categories such as normal lung, cancer affected lung and pneumonia affected lung using Random forest technique. The effectiveness of the implemented design is estimated by different parameters such as precision, recall, Accuracy and
F
1-measure. The proposed approach attains 97% accuracy; 98% of recall and F-measure rate is attained through the developed design and the proposed model gains 96% of precision score. Experimental outcomes show that the proposed model performs better than existing SVM, ELM, and MLP in classifying lung cancer and pneumonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.