The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.3 kg yr, characterized by an effective energy resolution of (7.7±0.5) keV FWHM and a background in the region of interest of (0.014±0.002) counts/(keV kg yr), we find no evidence for neutrinoless double-beta decay. Including systematic uncertainties, we place a lower limit on the decay half-life of T_{1/2}^{0ν}(^{130}Te)>1.3×10^{25} yr (90% C.L.); the median statistical sensitivity of this search is 7.0×10^{24} yr. Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find T_{1/2}^{0ν}(^{130}Te)>1.5×10^{25} yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find m_{ββ}<(110-520) meV, where the range reflects the nuclear matrix element estimates employed.
This paper reports on the development of a technology involving 100 Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed nextgeneration bolometric experiment to search for neutrinoless double-beta decay. Large mass (∼ 1 kg), high optical quality, radiopure 100 Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the doublebeta transition of 100 Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α-induced dominant background above 2.6 MeV is better than 8σ . Less than 10 µBq/kg activity of 232 Th ( 228 Th) and 226 Ra in the crystals is ensured by boule recrystallization. The potential of 100 Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg×d exposure: the two neutrino double-beta decay half-life of 100 Mo has been measured with the up-to-date highest accuracy as T 1/2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10 18 years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100 Mo.
The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in Se, the ZnSe crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three ZnSe crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.
Bolometers have proven to be very good detectors to search for rare processes thanks to their excellent energy resolution and their low intrinsic background. Further active background rejection can be obtained by the simultaneous readout of the heat and light signals produced by particles interacting in scintillating bolometers, as proposed by the LUCIFER experiment. In this framework, the choice of the light detector and the optimization of its working conditions play a crucial role. In this paper, we report a study of the performances of a Germanium bolometric light detector in terms of signal amplitude, energy resolution and signal time development. The impact of various operational parameters on the detector performances is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.