We have prepared crystalline nanowires (diameter ~ 50 nm, length ~ a few microns) of the charge ordering manganite Pr 0.5 Ca 0.5 MnO 3 using a low reaction temperature hydrothermal method and characterized them using X-ray diffraction, transmission electron microscopy, SQUID magnetometry and electron magnetic resonance measurements. While the bulk sample shows a charge ordering transition at 245 K and an antiferromagnetic transition at 175 K, SQUID magnetometry and electron magnetic resonance experiments reveal that in the nanowires phase, a ferromagnetic transition occurs at ~ 105 K. Further, the antiferromagnetic transition disappears and the charge ordering transition is suppressed. This result is particularly significant since the charge order in Pr0.5Ca0.5MnO3 is known to be very robust, magnetic fields as high as 27 T being needed to melt it. a) Electronic mail: svbhat@physics.iisc.ernet.in 1
We show from conventional magnetization measurements that the charge order (CO) is completely suppressed in 10 nm Pr(0.5)Ca(0.5)MnO(3)(PCMO 10) nanoparticles. Novel magnetization measurements, designed by a special high field measurement protocol, show that the dominant ground state magnetic phase is ferromagnetic-metallic (FM-M), which is an equilibrium phase, which coexists with the residual charge ordered anti-ferromagnetic phase (CO AFM) (an arrested phase) and exhibits the characteristic features of a 'magnetic glassy state' at low temperatures. It is observed that there is a drastic reduction in the field required to induce the AFM to FM transition (∼5-6 T) compared to their bulk counterpart (∼27 T); this phase transition is of first order in nature, broad, irreversible and the coexisting phases are tunable with the cooling field. Temperature-dependent magneto-transport data indicate the occurrence of a size-induced insulator-metal transition (T(M-I)) and anomalous resistive hysteresis (R-H) loops, pointing out the presence of a mixture of the FM-M phase and AFM-I phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.