The dynamic response of a swirling flow undergoing vortex breakdown is investigated via Large Eddy Simulation (LES) and experiments in a water flow facility. The investigation is carried out following previous work on the link between thermoacoustic combustion instabilities and coherent structures in lean premixed gas turbine combustors. The velocity field transfer function is obtained in LES from the Unit Impulse Response determined via application of a low intensity broadband noise perturbation of the inflow mass flow rate and the Wiener-Hopf filtering method. In the experiments, harmonic fluctuations in the water flow rate through the swirler are generated via a piston mounted on the side wall of the test facility and activated with a low frequency linear motor. The velocity field transfer function is then obtained via phase averaging applied to Particle Image Velocimetry snapshots which are collected at prescribed values of the harmonic phase. The analysis, which is carried out in terms of coherent structures identified via Proper Orthogonal Decomposition, gives numerical transfer functions with amplitude and phase consistent with the experimental ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.