and from several drug and device companies active in atrial fibrillation. PK has previously received honoraria from several such companies. PK and LF are listed as inventors on 2 patents held by the University of Birmingham ("Atrial fibrillation therapy," WO 2015140571; "Markers for atrial fibrillation," WO 2016012783).
Highlights
Cardiac optical mapping is a fluorescent imaging method to study electrical behaviour and calcium handling in the heart.
Optical mapping provides higher spatio-temporal resolution than electrode techniques, allowing unique insights into cardiac electrophysiology in health and disease from a variety of pre-clinical models.
Both transmembrane voltage and intracellular calcium dynamics can be studied with the use of appropriate fluorescent dyes.
Optical mapping has traditionally required the use of mechanical uncouplers, however computational and technical developments have lessened the requirement for these agents.
Novel fluorescent dyes have been developed to optimise spectral properties, experimental timescales, biological compatibility and fluorescence output.
The combination of these developments has made possible novel mapping experiments, including recent
in vivo
application of the technique.
Rationale:
Fibrosis promotes the maintenance of atrial fibrillation (AF), making it resistant to therapy. Improved understanding of the molecular mechanisms leading to atrial fibrosis will open new pathways towards effective antifibrotic therapies.
Objective:
This study aims to decipher the mechanistic interplay between polo-like kinase 2 (PLK2) and the pro-fibrotic cytokine osteopontin (OPN) in the pathogenesis of atrial fibrosis and atrial fibrillation.
Methods and Results:
Atrial PLK2 mRNA expression was 10-fold higher in human fibroblasts than in cardiomyocytes. Compared to sinus rhythm (SR), right atrial appendages and isolated right atrial fibroblasts from AF patients showed downregulation of PLK2 mRNA and protein, along with increased PLK2 promotor methylation. Genetic deletion as well as pharmacological inhibition of PLK2 induced pro-fibrotic phenotype conversion in cardiac fibroblasts and led to a striking de novo secretion of OPN. Accordingly, PLK2-deficient (PLK2 KO) mice showed cardiac fibrosis and were prone to experimentally induced AF. In line with these findings, OPN plasma levels were significantly higher only in AF patients with atrial low-voltage zones (surrogates of fibrosis) compared to SR controls. Mechanistically, we identified ERK1/2 as the relevant downstream mediator of PLK2 leading to increased OPN expression. Finally, oral treatment with the clinically-available drug mesalazine, known to inhibit ERK1/2, prevented cardiac OPN overexpression and reversed the pathological PLK2 KO phenotype in PLK2 KO-mice.
Conclusions:
In summary, abnormal PLK2/ERK1/2/OPN axis function critically contributes to AF-related atrial fibrosis, suggesting reinforcing PLK2 activity and/or OPN inhibition as innovative targets to prevent fibrosis progression in AF. Mesalazine derivatives may be used as lead compounds for the development of novel anti-AF agents targeting fibrosis.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.