Cross-Linked Polyethylene (XLPE) is widely used as insulation in electrical engineering, especially as cable insulation sheaths. In order to improve the dielectric properties susceptible to be modified under the effects of thermal aging and water in an absorption environment, polymers are mixed with ceramics. In this paper, the influence of barium titanate (BaTiO3), on the dielectric properties of XLPE has been studied. Dielectric parameters have been measured using an impedance analyzer RLC (WAYNE KERR 6420 type). Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and X-ray diffraction were used as characterization techniques. The study has been carried out on two samples of XLPE. A pure sample of each were studied as a unloaded samples to be compared with samples of 5%wt, 10%wt, 15%wt and 20%wt. BaTiO3 loaded XLPE. Afterwards, the composites were subject to humidity and to thermal aging. The incorporation of BaTiO3 1[Formula: see text]C does not modify the crystallinity and morphology of the XLPE and 2[Formula: see text]C reduces the space charges therefore the dielectric losses. [Formula: see text], [Formula: see text] and loss index are measured. Frequency response analysis has been followed in the frequency range (20–300 Hz). Experimental results show well that BaTiO3 as nano-filler improves the dielectric properties of XLPE but in excessive content can drive to the cracking and therefore to absorption of water.
This paper proposes a renewable energy hybrid power system that is based on photovoltaic (PV) and wind power generation and is equipped with Superconducting Magnetic Energy Storage (SMES). Wind and solar power generation are two of the most promising renewable power generation technologies. They are suitable for hybrid systems because they are environmentally friendly. However, like most renewable energy sources, they are characterized by high variability and discontinuity. They generate a fluctuating output voltage that damages the machines that operate on a stable supply. Therefore, the energy storage system SMES with the function to reduce output voltage fluctuation problems is introduced. SMES is found to be the most effective energy storage device as a result of its quick time response, high power density, and high energy conversion efficiency. In this paper, modeling of a hybrid system with SMES is built using MATLAB/Simulink. Blocks such as the wind model, PV model, and energy storage model are built separately before combining into a complete hybrid system with SMES. Varying wind speed and solar irradiance values are taken as the input parameters. The obtained results from the simulation reveal that a system with SMES is more reliable than a system without SMES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.