Fractures or discontinuities perpendicular to the least stress σ3 were generated in a synthetic rock analogue (granular, frictional, cohesive, and dilatant) material in axisymmetric extension tests. These fractures are of two types defined by the mean stress σ. When σ is very small, the fractures form through the mode I cracking at tensile σ3 equal to the material tensile strength. The fracture walls have smooth surfaces. At higher σ, these surfaces become rougher, with the topography features forming faint or delicate plumose patterns. The amplitude of the plumose topography increases with σ. The axial stress σ3 at fracturing reduces in magnitude and changes in sign with the σ increase. Thus σ3 orthogonal discontinuities can form at compressive σ3. SEM observations show that these discontinuities are deformation localization bands where the material is characterized by the heterogeneous decohesion and volume and porosity increase due to dilatancy. The band thickness is several grain sizes. At formation, the bands are not opened, so they are not mode I fractures. They become fractures with plumose fractography after the separation of the sample parts along the band. The formation mechanism of these discontinuities or fractures is not completely clear, but it is suggested that it represents a running constitutive instability in the form of dilatancy banding (with further σ increase the bands become inclined to σ1, i.e., shear). The similarity between the experimentally generated plumose surface fractures and natural joints is discussed, and it is suggested that they can be formed as propagating constitutive instabilities.
The Equatorial Ocean is unique in that flow accelerations resulting from local forcing are not subsequently deflected by the earth's rotation. Currents can accelerate to the point where they become dynamically unstable at both large and small scales, leading to phenomena such as Tropical Instability Waves (TIWs) and energetic upper ocean turbulence. These instabilities have enormous impact on the climate system, the global carbon cycle and on human activity (e.g.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.