Pectin lyase finds applications in the degumming and retting of plant fibers where it degrades highly methylesterified pectin without prior action of any other pectinase. Response surface methodology (RSM) has been frequently utilized for the optimization of production process of industrially important enzymes from microbes. In the present work, fermentation conditions for the production of pectin lyase from Bacillus cereus were optimized using the factorial and central composite design of RSM. The cubic order polynomial regression model was found to be adequate and significant with a determination coefficient R 2 of 0.9505 (p<0.0001). The ANOVA analysis and three dimensional surface plots confirmed interaction among variables. The optimum values of variables were found to be pectin 4% (w/v), sodium carbonate 1% (w/v), manganese sulfate 0.055% (w/v) and magnesium sulfate 0.018% (w/v) at 150 rpm under response surface curves. After optimization, the experimental value of maximum activity of enzyme (3.37 U/ml) was found higher but close to the predicted value (2.68 U/ml) and the enzyme activity increased by 1.32 fold (32.16%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.