A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of “inertial” analogs of surface Poincaré and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincaré waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor [“Tidal oscillations in gulfs and basins,” Proc. London Math. Soc., Ser. 2 XX, 148–181 (1921)], Rao [“Free gravitational oscillations in rotating rectangular basins,” J. Fluid Mech. 25, 523–555 (1966)] and also, for inertial waves, by Maas [“On the amphidromic structure of inertial waves in a rectangular parallelepiped,” Fluid Dyn. Res. 33, 373–401 (2003)] upon truncation of an infinite matrix. The present approach enhances the currently available, structurally concise modal solution introduced by Maas. In contrast to Maas' approach, our solution does not have any convergence issues in the interior and does not suffer from Gibbs phenomenon at the boundaries. Additionally, an alternative finite element method is used to contrast these two semi-analytical solutions with a purely numerical one. The main differences are discussed for a particular example and one eigenfrequency.
A discontinuous Galerkin finite element method (DGFEM) has been developed and tested for linear, three-dimensional, rotating incompressible Euler equations. These equations admit complicated wave solutions.The numerical challenges concern: (i) discretisation of a divergence-free velocity field; (ii) discretisation of geostrophic boundary conditions combined with no-normal flow at solid walls; (iii) discretisation of the conserved, Hamiltonian dynamics of the inertial-waves; and, (iv) large-scale computational demands owing to the three-dimensional nature of inertial-wave dynamics and possibly its narrow zones of chaotic attraction. These issues have been resolved: (i) by employing Dirac's method of constrained Hamiltonian dynamics to our DGFEM for linear, compressible flows, thus enforcing the incompressibility constraints; (ii) by enforcing no-normal flow at solid walls in a weak form and geostrophic tangential flow -along the wall; (iii) by applying a symplectic time discretisation; and, (iv) by combining PETSc's linear algebra routines with our high-level software.We compared our simulations with exact solutions of three-dimensional compressible and incompressible flows, in (non)rotating periodic and partly periodic cuboids (Poincaré waves). Additional verifications concerned semianalytical eigenmode solutions in rotating cuboids with solid walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.