Typical post-impact assessment of an oil-spill-impacted site in Agbada west plain of the Niger Delta basin of Nigeria was carried out 13 months after recorded incidence of spillage, using empirical indices of reconnaissance and extractable hydrocarbon content. Field-reconnaissance surveys revealed lower species' numbers and diversity of surface and subterranean flora and fauna. The presence and absence of such plant species as Elaeis guineensis, Musanga cecropiodes, and Andropogon gayanus, as well as animal species like earthworms and nematodes in sampled plots, corroborated the evidence provided by the total extractable hydrocarbon content (of (2.53+/-0.43)x10(2) mg/kg and (2.00+/-0.76)x10(2) mg/kg at surface and subsurface depths, resp.) on the level of degradation and/or regeneration at the polluted site. The most important evidence that oiling must have been responsible, at least in part, for the reduction in species' number and diversity was provided by the plant cover, Andropogan gayanus, which occurred at a lower density of 0.9 plants/m2 in the oil-impacted plots and 14.00 plants/m2 in the unimpacted reference plots of an adjacent, geographically similar area. The presence of this species on site thus presented a significant difference (P<0.05) of over 85%, and indicated exhaustion or impoverishment of impacted soils. Elaeis guineensis, with a population density of 0.1 stands/m2, provided evidence of past cultivation on site, while species like Musanga cecropioides, with a density of 0.5 stands/m2, at the unimpacted site, confirmed the abandonment of the farmstead over a long period of time. For the fauna, the most sensitive indicator of hydrocarbon toxicity was provided by nematode Xiphinema sp. that were completely absent in the oil-impacted site.
The environmental impact of the 1997 leakage of the high-pressure crude-oil pipeline at Isiokpo in the Niger Delta in the southeast of Nigeria was evaluated, with particular reference to total-organic-carbon (TOC) and total-organic-matter (TOM) contents of soils within the vicinity of the oil spillage. The soils, taken from depths of 0-15 cm (surface) and 15-30 cm (subsurface), were found to be more acidic (pH 4.2-5.6) than the unpolluted soils, with a high average moisture content of 6.8%. The extractable hydrocarbon content ranged from 2.71-3.48 mg/kg, indicating hydrocarbon contamination. However, contrary to expectation, the TOC and TOM contents of the polluted soils did not show any significant increase in concentration, supposedly due to natural rehabilitation of the affected mat layer of soils. Thus, notwithstanding the possible proliferation of heterotrophic organisms by the presence of the added petroleum hydrocarbons, environmental conditions such as weathering and climatic predispositions, as well as physico-chemical parameters such as pH, moisture content, and temperature must have encumbered the carbon-mineralizing capacity of the heterotrophs, thereby reducing the turnover of carbon and the decomposition of organic matter. The restrictions by high moisture content might not come directly from H(2)O itself, but are probably a consequence of hindered soil ventilation, which reduces O(2) supply and gaseous diffusion, conditions that might have been substantially aggravated by the added petroleum hydrocarbons.
An oil spill polluted site at Ogbodo-Isiokpo in Ikwere Local Government Area of Rivers State in southern Nigeria, was identified for study following three successive reconnaissance surveys of oil fields in the Agbada west plain of Eastern Niger Delta. A sampling area of 200 m x 200 m was delimited at the oil spill impacted site using the grid technique and soils were collected at surface (0-15 cm) and subsurface (15-30 cm) depths from three replicate quadrats. A geographically similar, unaffected area, located 50 m adjacent to the polluted site, was chosen as a control (reference) site. Total extractable hydrocarbon contents of the polluted soils ranged from 3.02-4.54 and 1.60-4.20 mg/kg (no overlap in standard errors) at surface and subsurface depths respectively. The concentrations of two "diagnostic" trace heavy metals, nickel (Ni) and vanadium (V), which are normal constituents of crude oil, were also determined in the soils by atomic absorption spectrophotometric method after pre-extraction of cations with dithionite-citrate carbonate. Ni varied from 0.15 to 1.65 mg/kg in the polluted plots and from 0.18 to 0.82 mg/kg in the unpolluted plots; vanadium varied from 0.19 to 0.70 mg/kg in the polluted plots and from 0.14 to 0.38 mg/kg in the unpolluted plots. Ni and V were more enhanced (p < 0.05) in the oil-polluted soils, especially at subsurface depth. Whilst the oil spillage could be said to be indirectly responsible for the enhanced concentrations of nickel and vanadium via the injection and availability of the petroleum hydrocarbons that might have increased the activities of biodegradation on site, the physico-chemical properties of the soils and inherent mobility of metals, as well as the intense rainfall and flooding that characterized the period of study, may have also contributed, at least in part, to these enhanced concentrations. Such levels of Ni and V may result to enhanced absorption by plants, which may bring about possible bioaccumulation in such plants and the animals that depend on them for survival and all of these may lead to toxic reactions along the food chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.