The moment magnitude (Mw) 7.9 Fort Tejon earthquake of 1857, with a approximately 350-kilometer-long surface rupture, was the most recent major earthquake along the south-central San Andreas Fault, California. Based on previous measurements of its surface slip distribution, rupture along the approximately 60-kilometer-long Carrizo segment was thought to control the recurrence of 1857-like earthquakes. New high-resolution topographic data show that the average slip along the Carrizo segment during the 1857 event was 5.3 +/- 1.4 meters, eliminating the core assumption for a linkage between Carrizo segment rupture and recurrence of major earthquakes along the south-central San Andreas Fault. Earthquake slip along the Carrizo segment may recur in earthquake clusters with cumulative slip of approximately 5 meters.
The 4 April 2010 moment magnitude (M w) 7.2 El Mayor-Cucapah earthquake revealed the existence of a previously unidentifi ed fault system in Mexico that extends ~120 km from the northern tip of the Gulf of California to the U.S.-Mexico border. The system strikes northwest and is composed of at least seven major faults linked by numerous smaller faults, making this one of the most complex surface ruptures ever documented along the Pacifi c-North America plate boundary. Rupture propagated bilaterally through three distinct kinematic and geomorphic domains. Southeast of the epicenter, a broad region of distributed fracturing, liquefaction, and discontinuous fault rupture was controlled by a buried, southwest-dipping, dextral-normal fault system that extends ~53 km across the southern Colorado River delta. Northwest of the epicenter, the sense of vertical slip reverses as rupture propagated through multiple strands of an imbricate stack of eastdipping dextral-normal faults that extend ~55 km through the Sierra Cucapah. However, some coseismic slip (10-30 cm) was partitioned onto the west-dipping Laguna Salada fault, which extends parallel to the main rupture and defi nes the western margin of the Sierra Cucapah. In the northernmost domain, rupture terminates on a series of several north-northeast-striking cross-faults with minor offset (<8 cm) that cut uplifted and folded sediments of the northern Colorado River delta in the Yuha Desert. In the Sierra Cucapah, primary rupture occurred on four major faults separated by one fault branch and two accommodation zones. The accommodation zones are distributed in a left-stepping en echelon geometry, such that rupture passed systematically to structurally lower faults. The structurally lowest fault that ruptured in this event is inclined as shallowly as ~20°. Net surface offsets in the Sierra Cucapah average ~200 cm, with some reaching 300-400 cm, and rupture kinematics vary greatly along strike. Nonetheless, instantaneous extension directions are consistently oriented ~085° and the dominant slip direction is ~310°, which is slightly (~10°) more westerly than the expected azimuth of relative plate motion, but considerably more oblique to other nearby historical ruptures such as the 1992 Landers earthquake. Complex multifault ruptures are common in the central portion of the Pacifi c North American plate margin, which is affected by restraining bend tectonics, gravitational potential energy gradients, and the inherently three-dimensional strain of the transtensional and transpressional shear regimes that operate in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.