In this paper, a deterministic optimal control problem involving a Susceptible - Vaccinated - Infected - Recovered (SVIR) epidemic model is considered. The optimal control problem is characterized using the Pontryagin’s maximum principle involving three control strategies namely, social mobilization, screening and sanitation. The derived optimality system is numerically solved using the forward - backward Runge - Kutta fourth order method via the computational software matlab. The numerical simulations depict that each of the control strategy has its significance in minimizing the spread of diseases, but the optimal combination of these controls are more effective in stemming the emergence and spread of an epidemic.
The development and application of an implicit hybrid block method for the direct solution of second order ordinary differential equations with given initial conditions is shown in this research. The derivation of the three-step scheme was done through collocation and interpolation of power series approximation to give a continuous linear multistep method. The evaluation of the continuous method at the grid and off grid points formed the discrete block method. The basic properties of the method such as order, error constant, zero stability, consistency and convergence were properly examined. The new block method produced more accurate results when compared with similar works carried out by existing authors on the solution of linear and non-linear second order ordinary differential equations
In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation. This numerical integrator has been tested for desirable qualities like stability, convergence and consistency. The discrete models have been used for a numerical experiment which makes us conclude that the schemes are suitable for the solution of first order ordinary differential equation.
A lake is classified as a body of relatively still water that is almost completely surrounded by land with a river or stream that feeds into it or drains from it. A lake that has fish that you can catch can either be man-made or natural, with natural lakes tending to have more successful results. In this research, an interpolating function was proposed following Gompertz function approach considering the scale and shape parameters, a Numerical Method was developed and applied to solve the biological fish lake stocking and growth problem which gives effective results as when Gompertz equation was used directly. Numerical method is an effective tool to solve the problem of growth as its applicable in Gompertz equation. The method results obtained found to be favourable when the Numerical Solution and Analytical Solution is compared as the error obtained is minimal showing the effectiveness of the Method. Gompertz Function or equation was for long of interest only to actuaries and demographics. Its however, recently been used by various authors as a growth curve or function both for biological, economics and Management phenomena. Therefore, we have been able to show how the numerical integration obtained from the interpolating function work the same way Gompertz function worked.
In this paper, we used an interpolation function to derive a Numerical Integrator that can be used for solving first order Initial Value Problems in Ordinary Differential Equation. The numerical quality of the Integrator has been analyzed to authenticate the reliability of the new method. The numerical test showed that the finite difference methods developed possess the same monotonic properties with the analytic solution of the sampled Initial Value Problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.