The phytochemical profiles (total phenolics, anthocyanins, ferulic acid, carotenoids) and antioxidant activities of five types of corn (white, yellow, high carotenoid, blue, and red) processed into masa, tortillas, and tortilla chips were studied. The nixtamalization process significantly (p < 0.05) reduced total phenolics and antioxidant activities when compared to raw grains. Nixtamalized grains exhibited higher concentration of free phenolics and soluble conjugated ferulic acid and had lower concentrations of bound phenolics and ferulic acid than unprocessed grains. Among processed products, there was little difference in the phytochemical contents and antioxidant activities. Among types of corn, the highest concentrations of total phenolics, ferulic acid, and antioxidant activity were observed in the high-carotenoid genotype followed by the regular yellow counterpart. The white corn contained the lowest amount of total phenolics and antioxidant activity. The pigmented blue corn had the highest anthocyanin concentration followed by the red counterpart. These findings suggest that lime-cooking significantly reduced the phytochemical content of nixtamalized products but released phenolics and ferulic acid.
Seed legumes have played a major role as a crop worldwide, being cultivated on about 12% to 15% of Earth's arable land; nevertheless, their use is limited by, among other things, the presence of several antinutritional factors (ANFsnaturally occurring metabolites that the plant produces to protect itself from pest attacks.) Trypsin inhibitors (TIs) are one of the most relevant ANFs because they reduce digestion and absorption of dietary proteins. Several methods have been developed in order to inactivate TIs, and of these, thermal treatments are the most commonly used. They cause loss of nutrients, affect functional properties, and require high amounts of energy. Given the above, new processes have emerged to improve the nutritional quality of legumes while trying to solve the problems caused by the use of thermal treatments. This review examines and discusses the methods developed by researchers to inactivate TI present in legumes and their effects over nutritional and functional properties.
The flavonoids are compounds synthesized by plants, and they have properties such as antioxidant, anticancer, anti-inflammatory, and antibacterial, among others. One of the most important bioactive properties of flavonoids is their antioxidant effect. Synthetic antioxidants have side toxic effects whilst natural antioxidants, such as flavonoids from natural sources, have relatively low toxicity. Therefore, it is important to incorporate flavonoids derived from natural sources in several products such as foods, cosmetics, and drugs. For this reason, there is currently a need to extract flavonoids from plant resources. In this review are described the most important parameters involved in the extraction of flavonoids by unconventional methods such as ultrasound, pressurized liquid extraction, mechanochemical, high hydrostatic pressure, supercritical fluid, negative pressure cavitation, intensification of vaporization by decompression to the vacuum, microwave, infrared, pulsed electric field, high-voltage electrical discharges, and enzyme-assisted extraction. There are no unified operation conditions to achieve high yields and purity. Notwithstanding, progress has been achieved in the development of more advanced and environmentally friendly methods of extraction. Although in literature are found important advances, a complete understanding of the extraction process in each of the unconventional techniques is needed to determine the thermodynamic and kinetic mechanisms that govern each of the techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.