The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave-functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40 Ca( 18 O, 18 Ne) 40 Ar reaction at 270 MeV, give encouraging indication on the capability of the proposed technique to access relevant quantitative information.The two major aspects for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.3
Background: Heavy-ion induced two-nucleon transfer reactions are powerful tools to reveal peculiar aspects of the atomic nucleus, such as pairing correlations, single-particle and collective degrees of freedom, and more. Also, these processes are in competition with the direct meson exchange in the double charge exchange reactions, which have recently attracted great interest due to their possible connection to neutrinoless double-β decay. In this framework, the exploration of two-nucleon transfer reactions in the 20 Ne + 116 Cd collision at energies above the Coulomb barrier is particularly relevant since the 116 Cd nucleus is a candidate for the double-β decay.Purpose: We want to analyze selected transitions to low-lying 0 + and 2 + states of the residual nuclei in the 116 Cd( 20 Ne, 22 Ne) 114 Cd two-neutron pickup and 116 Cd( 20 Ne, 18 O) 118 Sn two-proton stripping reactions at 306 MeV incident energy and determine the role of the couplings with inelastic transitions. Methods: We measured the excitation energy spectra and absolute cross sections for the two reactions using the MAGNEX large acceptance magnetic spectrometer to detect the ejectiles. We performed direct coupled reaction channels and sequential distorted wave Born approximation calculations using the double folding São Paulo potential to model the initial and final state interactions. The spectroscopic amplitudes for two-and singleparticle transitions were derived by different nuclear structure approaches: microscopic large-scale shell model, interacting boson model-2 and quasiparticle random phase approximation. Results:The calculations are able to reproduce the experimental cross sections for both two-neutron and twoproton transfer reactions. The role of couplings with the inelastic channels are found to be important in the two-proton transfer case. A competition between the direct and the sequential process is found in the reaction *
Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described.
PoS(BORMIO2017)015NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay M. Cavallaro 2 Neutrinoless double beta decay (0νββ) is considered the best potential resource to determine the absolute neutrino mass scale. Moreover, if observed, it will signal that the total lepton number is not conserved and neutrinos are their own anti-particles. Presently, this physics case is one of the most important research "beyond Standard Model" and might guide the way towards a Grand Unified Theory of fundamental interactions.Since the ββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. The 0νββ decay rate can be expressed as a product of independent factors: the phase-space factors, the nuclear matrix elements (NME) and a function of the masses of the neutrino species. Thus the knowledge of the NME can give information on the neutrino mass scale, if the 0νββ decay rate is measured.In the NURE project, supported by a Starting Grant of the European Research Council, nuclear reactions of double charge-exchange (DCE) will be used as a tool to extract information on the ββ NME. In DCE reactions and ββ decay, the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute crosssections can give crucial information on ββ matrix elements. IntroductionDouble charge-exchange reactions (DCE) are processes characterized by the transfer of two units of the isospin component (two protons transformed into two neutrons or vice versa), leaving the mass number unchanged. The initial and final nuclear states involved in DCE reaction and ββ decay are the same and the transfer operators have similar spin-isospin mathematical structure. Namely they both contain a Fermi, a Gamow-Teller and a rank-two tensor term. A relevant amount of linear momentum (of the order of 100 MeV/c) is available in the virtual intermediate channel in both processes. This is a crucial similarity since the nuclear matrix elements strongly depend on the momentum transfer and other processes (single charge-exchange reactions, 2νββ decay etc.) cannot probe this feature. Thus, even if the two processes are mediated by different interactions, the involved nuclear matrix elements could be connected and the determination of the DCE reaction cross-sections could give important information on the ββ matrix elements.One should remind that a proportionality relation is well established at a level of few percent between single β decay strengths and single charge-exchange reaction cross-sections, under specific dynamical conditions. Indeed, single charge-exchange reactions are routinely used as a tool to determine Fermi and Gamow-Teller transition strengths for single β decay, as demonstrated by several works [1][2][3][4][5][6][7]. However, studying the link between ββ-decay strengths and DCE crosssections is a not trivial task and requires a strong effort.Experimental attempts were done in the past to perform DCE reactions [8], [9]. Howeve...
The 40Ca(18O,18F)40K single charge exchange (SCE) reaction is explored at an incident energy of 275 MeV and analyzed consistently by collecting the elastic scattering and inelastic scattering data under the same experimental conditions. Full quantum-mechanical SCE calculations of the direct mechanism are performed by including microscopic nuclear structure inputs and adopting either a bare optical potential or a coupled channel equivalent polarization potential (CCEP) constrained by the elastic and inelastic data. The direct SCE mechanism describes the magnitude and shape of the angular distributions rather well, thus suggesting the suppression of sequential multi-nucleon transfer processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.