Abstract. The epithelial glycoprotein 40 (EGP40, also known as GA733-2, ESA, KSA, and the 17-1A antigen), encoded by the GA-733-2 gene, is expressed on the baso-lateral cell surface in most human simple epithelia. The protein is also expressed in the vast majority of carcinomas and has attracted attention as a tumor marker. The function of the protein is unknown. We demonstrate here that EGP40 is an epithelium-specific intercellular adhesion molecule. The molecule mediates, in a Ca2+-independent manner, a homophilic cell-cell adhesion of murine cells transfected with the complete EGP40 eDNA. Two murine cell lines were tested for the effects of EGP40 expression: fibroblastic L cells and dediff-erentiated mammary carcinoma L153S cells. The expression of the EGP40 protein causes morphological changes in cultures of transfected cells-increasing intercellular adhesion of the transfectants-and has a clear effect on cell aggregating behavior in suspension aggregation assays. EGP40 directs sorting in mixed cell populations, in particular, causes segregation of the transfectants from the corresponding parental cells. EGP40 expression suppresses invasive colony growth of L cells in EHS-matrigel providing tight adhesions between cells in growing colonies. EGP40 can thus be considered a new member of the intercellular adhesion molecules. In its biological behavior EGP40 resembles to some extent the molecules of the immtmoglobulin superfamily of cell adhesion molecules (CAMs), although no immunoglobulin-like repeats are present in the EGP40 molecule. Certain structural similarities in general organization of the molecule exist between EGP40 and the lin-121Notch proteins. A possible role of this adhesion molecule in formation of architecture of epithelial tissues is discussed. To reflect the function of the molecule the name Ep-CAM for EGP40 seems appropriate.
The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association with hyperplastic and malignant proliferation of epithelial cells.
This report describes a monoclonal antibody designated G 250, subclass IgGl, that recognizes an antigen preferentially expressed on cell membranes of renal-cell carcinoma cells (RCC) and not expressed in normal proximal tubular epithelium. G 250 antibody reacted with 46 of 47 primary RCC, with 7 of 8 RCC metastases and with a few other malignant tumors. The staining pattern of G 250 differs from that of other RCC-related antibodies described. Preliminary experiments show that this antibody can be used to visualize RCC xenografts in nude mice by immunoscintigraphy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.