Porcine respiratory disease complex (PRDC) is one of the most important health concerns for pig producers and can involve multiple viral and bacterial pathogens. No simple, single-reaction diagnostic test currently exists for the simultaneous detection of major pathogens commonly associated with PRDC. Furthermore, the detection of most of the bacterial pathogens implicated in PRDC currently requires time-consuming culture-based methods that can take several days to obtain results. In this study, a novel prototype automated microarray that integrates and automates all steps of post-PCR microarray processing for the simultaneous detection and typing of eight bacteria and viruses commonly associated with PRDC is described along with associated multiplex reverse transcriptase PCR. The user-friendly assay detected and differentiated between four viruses [porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus, porcine circovirus type 2, porcine respiratory corona virus], four bacteria (Mycoplasma hyopneumoniae, Pasteurella multocida, Salmonella enterica serovar Choleraesuis, Streptococcus suis), and further differentiated between type 1 and type 2 PRRSV as well as toxigenic and non-toxigenic P. multocida. The assay accurately identified and typed a panel of 34 strains representing the eight targeted pathogens and was negative when tested with 34 relevant and/or closely related non-target bacterial and viral species. All targets were also identified singly or in combination in a panel of clinical lung samples and/or experimentally inoculated biological material.
The aim of this study was to isolate a novel bacterial strain with strong and broad spectrum antibacterial activity from a livestock feed prebiotic supplement. A novel strain, termed Paenibacillus polymyxa JB05-01-1, was isolated using traditional microbiological methods and identified on the basis of its phenotypic and biochemical properties as well as its 16S rRNA gene sequence. This strain was able to inhibit growth of gram-negative bacteria including Escherichia coli RR1, Pseudomonas fluorescens R73, Pantoea agglomerans BC1, Butyrivibrio fibrisolvens OR85, and Fibrobacter succinogenes. The above antagonism against the aforementioned bacteria was attributed to production of an antimicrobial substance(s) termed "JB05-01-1." Its production was optimal during the stationary phase. JB05-01-1 has a molecular weight of 2.5 KDa, its mode of action is bactericidal, and the divalent cations, Ca(2+) and Mn(2+), reduced its lethality. The antibacterial activity was heat-stable and was effective at a pH range of 2-9. Enzymes like trypsin, α-chymotrypsin, and proteinase K have abolished the antibacterial activity of JB05-01-1 indicating a proteinaceous motif. This type of naturally occurring bacteria and inhibitory substance(s) could represent an additional value in livestock feed supplements. The natural presence of antibacterial activity indicates an opportunity to decrease the addition of antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.