Abstract. It has been remarked that a fair measure of the impact of Atle Selberg's work is the number of mathematical terms that bear his name. One of these is the Selberg integral, an n-dimensional generalization of the Euler beta integral. We trace its sudden rise to prominence, initiated by a question to Selberg from Enrico Bombieri, more than thirty years after its initial publication. In quick succession the Selberg integral was used to prove an outstanding conjecture in random matrix theory and cases of the Macdonald conjectures. It further initiated the study of q-analogues, which in turn enriched the Macdonald conjectures. We review these developments and proceed to exhibit the sustained prominence of the Selberg integral as evidenced by its central role in random matrix theory, Calogero-Sutherland quantum many-body systems, Knizhnik-Zamolodchikov equations, and multivariable orthogonal polynomial theory.
Using matrix inversion and determinant evaluation techniques we prove several
summation and transformation formulas for terminating, balanced,
very-well-poised, elliptic hypergeometric series.Comment: 21 pages, AMS-LaTe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.