The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45.
Population growth rates in Sub-Saharan East Africa are among the highest in the world, creating increasing pressure for land cover conversion. To date, however, there has been no comprehensive assessment of regional land cover change, and most long-term trends have not yet been quantified. Using a designed sample of satellite-based observations of historical land cover change, we estimate the areas and trends in nine land cover classes from 1998 to 2017 in Ethiopia, Kenya, Uganda, Malawi, Rwanda, Tanzania, and Zambia. Our analysis found an 18,154,000 (±1,580,000) ha, or 34.8%, increase in the area of cropland in East Africa. Conversion occurred primarily from Open Grasslands, Wooded Grasslands, and Open Forests, causing a large-scale reduction in woody vegetation classes. We observed far more conversion (by approximately 20 million hectares) of woody classes to less-woody classes than succession in the direction of increasing trees and shrubs. Spatial patterns within our sample highlight regional land cover conversion hotspots, such as the Central Zambezian Miombo Woodlands, as potential areas of concern related to the conservation of natural ecosystems. Our findings reflect a rapidly growing population that is moving into new areas, with a 43.5% increase in the area of Settlements over the three-decade period. Our results show the areas and ecoregions most impacted by three decades of human development, both spatially and statistically.
On-site sanitation facilities, mostly pit latrines are the main points of human excreta disposal in periurban low-income settlements in Kenya. Collection, treatment and final disposal of pit latrine faecal sludge, pose a significant management problem and present public health risks. The choice of appropriate faecal sludge treatment technology depends on precise region based data on the sludge characteristics that are often unavailable. The study analysed physiochemical characteristics of faecal sludge sampled at different depths of pit latrines. Twenty-four samples were collected from six pit latrines along the depth strata at 1-m intervals from the surface to 3 m depth. Samples were analysed for chemical oxygen demand (COD), biochemical oxygen demand (BOD), ammonia, total nitrogen and total phosphorus. The mean COD: BOD ratio was 1:5 with a concentration of 112800 and 24600 mg/L, respectively. Concentrations for all parameters were variable and higher in comparison with properties reported in literature. Upper layers had higher concentrations than lower depths. The concentrations of the sludge were 10-100 higher than acceptable limits for in-fluent sludge into municipal wastewater treatment plants. These results show that disposal of pit latrine faecal sludge into the wastewater treatment plants without co-treatment overload the system since treatment plants in use currently have not been designed to handle pit latrine sludge. The properties of faecal sludge analysed indicate that the wastewater treatment plants may not be capable of treating faecal sludge unless co treatment mechanisms are applied. Therefore, influent faecal sludge must be maintained within allowable concentrations; otherwise, the effluents may lead to significant environmental pollution impacts.
We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar‐O'Neil model and dose lookup tables generated by the Earth‐Moon‐Mars Radiation Environment Module (EMMREM). This study demonstrates an updated atmospheric radiation model that uses new dose tables to improve the accuracy of the modeled dose rates. Additionally, a method for computing geomagnetic cutoffs is incorporated into the model in order to account for location‐dependent effects of the magnetosphere. Newly available measurements of atmospheric dose rates from instruments aboard commercial aircraft and high‐altitude balloons enable us to evaluate the accuracy of the model in computing atmospheric dose rates. When compared to the available observations, the model seems to be reasonably accurate in modeling atmospheric radiation levels, overestimating airline dose rates by an average of 20%, which falls within the uncertainty limit recommended by the International Commission on Radiation Units and Measurements (ICRU). Additionally, measurements made aboard high‐altitude balloons during simultaneous launches from New Hampshire and California provide an additional comparison to the model. We also find that the newly incorporated geomagnetic cutoff method enables the model to represent radiation variability as a function of location with sufficient accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.