No abstract
The Canopy Horizontal Array Turbulence Study (CHATS) took place in spring 2007 and is the third in the series of Horizontal Array Turbulence Study (HATS) experiments. The HATS experiments have been instrumental in testing and developing subfilterscale (SFS) models for large-eddy simulation (LES) of planetary boundary layer (PBL) turbulence. The CHATS campaign took place in a deciduous walnut orchard near Dixon, California, and was designed to examine the impacts of vegetation on SFS turbulence. Measurements were collected both prior to and following leafout to capture the impact of leaves on the turbulence, stratification, and scalar source/sink distribution. CHATS utilized crosswind arrays of fast-response instrumentation to investigate the impact of the canopy-imposed distribution of momentum extraction and scalar sources on SFS transport of momentum, energy, and three scalars. To directly test and link with PBL parameterizations of canopy-modified turbulent exchange, CHATS also included a 30-m profile tower instrumented with turbulence instrumentation, fast and slow chemical sensors, aerosol samplers, and radiation instrumentation. A highresolution scanning backscatter lidar characterized the turbulence structure above and within the canopy; a scanning Doppler lidar, mini sodar/radio acoustic sounding system (RASS), and a new helicopter-observing platform provided details of the PBL-scale flow. Ultimately, the CHATS dataset will lead to improved parameterizations of energy and scalar transport to and from vegetation, which are a critical component of global and regional land, atmosphere, and chemical models. This manuscript presents an overview of the experiment, documents the regime sampled, and highlights some preliminary key findings.
Abstract. Lake-induced atmospheric circulations over three lakes ranging from 3 to 10 km width are analyzed using data from three aircraft during the 1994 Boreal EcosystemAtmosphere Study (BOREAS). A well-defined divergent lake breeze circulation is observed over all three lakes during the day. Under light wind conditions, the lake breeze is not very sensitive to the water temperature, and the strength of the divergence over the lake decreases with increasing lake size. The boundary-layer development over the surrounding land can be very important for generating a horizontal pressure difference which drives the lake breeze. Diurnal and seasonal variations of lake breezes are investigated on the basis of repeated passes from the different aircraft at different altitudes from late spring to early fall of 1994. The lake breeze divergence increases with time during the day and reaches a maximum around 1300 LST. The latent heat flux over 10-km-wide Candle Lake increases steadily from spring to fall as the lake temperature increases. The latent heat flux over the land reaches a maximum during the summer due to evapotranspiration. The lake effect on area-averaged fluxes sometimes leads to a negative heat transfer coefficient for an averaging scale of several times the lake width. IntroductionAtmospheric boundary layer flow can be strongly influenced by the spatially varying energy exchange between heterogeneous ground surfaces and overlying air. Lakes can lead to particularly strong variations in surface heat flux.The summer daytime air over a lake typically is cooler and denser than the air overlying relatively warm adjacent land surfaces. As a result, a horizontal pressure gradient is generated by the air density difference which forces onshore flow, commonly called the lake breeze. Lake breeze studies have been reported for Lake Erie
ABSTRACT. The site survey for the Advanced Technology Solar Telescope concluded recently after more than 2 years of data gathering and analysis. Six locations, including lake, island, and continental sites, were thoroughly probed for image quality and sky brightness. The present paper describes the analysis methodology employed to determine the height stratification of the atmospheric turbulence. This information is crucial, because daytime seeing is often very different between the actual telescope aperture (∼30 m) and the ground. Two independent inversion codes have been developed to simultaneously analyze data from a scintillometer array and a solar differential image monitor. We show here the results of applying them to a sample subset of data from 2003 May that was used for testing. Both codes retrieve a similar seeing stratification through the height range of interest. A quantitative comparison between our analysis procedure and actual in situ measurements confirms the validity of the inversions. The sample data presented in this paper reveal a qualitatively different behavior for the lake sites (dominated by high-altitude seeing) and the rest (dominated by near-ground turbulence).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.