In this research, a novel portable instrument for on-site, real-time air particulate monitoring was developed. It is highly desirable to use microwave plasmas for on-site, real-time environmental and occupational hazard monitoring because they can be sustained with various gases at relatively low power and possess excellent detection capabilities for both metal and nonmetal air pollutants. In the new instrument design, a microwave plasma was selected as an excitation source and was used in conjunction with atomic emission spectrometry. A small, integrated spectrometer with a charge-coupled detector (CCD) was used for optical signal detection. An efficient, in situ air-sampling system was developed for direct sampling of air particles into the plasma. Characterization and calibration of the new instrument were achieved with an in-house-fabricated high-efficiency nebulization-desolvation system. Tolerance of the microwave argon plasma source to air introduction was tested, and the operational parameters were optimized. Analytical performance and the feasibility of the newly developed portable instrument for aerosol particle analysis were evaluated. Some advantages and possible applications of the new instrument are discussed. The instrument provides an innovative tool for rapid environmental and occupational hazard monitoring.
Weakly textured hot-pressed (HP) beryllium and strongly textured hot-rolled beryllium were compressed using a split-Hopkinson pressure bar (SHPB) (strain rate ϳ4500 s Ϫ1 ) to a maximum of 20 pct plastic strain as a function of temperature. The evolution of the crystallographic texture was monitored with neutron diffraction and compared to polycrystal plasticity models for the purpose of interpretation. The macroscopic response of the material and the active deformation mechanisms were found to be highly dependent on the orientation of the load with respect to the initial texture. Specifically, twinning is inactive when loaded parallel to the strong basal fiber but accounts for 27 pct of the plastic strain when loaded transverse to the basal fiber. In randomly textured samples, 15 pct of the plastic strain is accomplished by twinning. The role of deformation mechanisms with components out of the basal plane (i.e., twinning and pyramidal slip) is discussed.
The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring. ͓S0034-6748͑00͒03103-8͔
Plastic deformation in cubic metals is relatively simple due to the high crystallographic symmetry of the underlying structure. Typically, one unique slip mode can provide arbitrary deformation. This is not true in lower symmetry hexagonal metals, where prismatic and basal slip (the usual favored modes) are insufficient to provide arbitrary deformation. Often, either pyramidal slip and/or deformation twinning must be activated to accommodate imposed plastic deformation. The varied difficulty of activating each of these deformation mechanisms results in a highly anisotropic yield surface and subsequent mechanical properties. Further, the relative activity of each deformation mode may be manipulated through control of the initial crystallographic texture, opening new opportunities for the optimization of mechanical properties for a given application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.