We have developed a chromosomal integration system for gene transfer into the extreme thermophile Thermus flavus. The system relies on integration at the site of leuB (3-isopropylmalate dehydrogenase) which was cloned from T. flavus. The leuB gene was insertionally inactivated in vitro with a thermostable kanamycin-resistance gene and transformed in single-copy into the chromosome of T. flavus on a plasmid vector. Gene replacement strains required leucine for growth, were stably kanamycin-resistant and could grow in the presence of kanamycin at temperatures up to 55 degrees C.
Mutants of the extreme thermophile Thermus flavus in the pyrimidine biosynthetic pathway (Pyr ؊ ) were isolated by resistance to 5-fluoroorotic acid. The pyrE gene, which codes for the orotate phosphoribosyltransferase, was cloned by recombination with one of the isolated Pyr ؊ T. flavus mutant strains. It was subcloned by complementation of an Escherichia coli pyrE mutant strain and was sequenced. The deduced polypeptide sequence extends over 183 amino acids. Several independent Pyr ؊ mutations were mapped within the pyrE locus by recombination with fragments of the cloned gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.